梯形面積的計算4
教學目標 (一)理解梯形面積的計算方法,能運用公式正確地計算梯形的面積。 (二)通過學生親自動手拼擺,培養學生的空間觀念,發展學生的思維能力。教學重點和難點 重點:使學生掌握梯形面積的計算公式。 難點:理解梯形面積計算公式的推導過程。課前準備 教具:各種圖形的投影片;用吹塑紙剪好兩個完全相同的直角梯形、等腰梯形或一般梯形;渠道橫截面的實物教具。 學具:每人制做兩個完全一樣的梯形(直角梯形、等腰梯形或一般梯形)。教學過程設計(一)復習準備 1.出示下列圖形(投影) 教案一.files/image001.jpg"> 2.提問: (1)這些分別是什么圖形?有什么共同的特征?(都是四邊形,都有四個角。) (2)如圖剪去四邊形的一角,就會得到什么圖形?(學生試驗。) 得出:可能是三角形,也可能是梯形和五邊形(五邊形暫不研究。)教案一.files/image002.jpg">
(3)怎樣計算以上圖形的面積?是怎樣推導的? (4)梯形的面積應怎樣計算呢?(二)學習新課 1.思考:能不能把梯形也轉化成我們學過的圖形呢? 2.學生動手操作。(用準備好的兩個完全一樣的梯形拼擺。) 3.讓學生將拼出的圖形依次在投影儀上演示,教師用吹塑紙貼在黑板上。 重點體會:旋轉和平移。教案一.files/image003.jpg"> 4.思考: (1)拼出的平行四邊形(長方形或正方形)的面積與梯形的面積有什么關系? (2)拼出的平行四邊形的底和高(長方形的長和寬,正方形的邊長)分別相當于原梯形的哪部分? (3)怎樣計算梯形的面積? 5.討論后得出:因為拼成的平行四邊形(長方形、正方形)是由兩個大小完全一樣的梯形拼成的,所以梯形的面積就是平行四邊形(長方形、正方形)面積的一半。平行四邊形的底(長方形的長、正方形的邊長)是梯形的上底與下底的和,平行四邊形的高(長方形的寬,正方形的邊長)與梯形的高相等。所以梯形的面積等于上底與下底的和乘以高除以2。 教師板書: 一個梯形的面積=(上底+下底)×高÷2 兩個梯形的面積=(上底+下底)×高 平行四邊形的面積=底×高 長方形的面積=長×寬 正方形的面積=邊長×邊長 6.如果用s表示梯形的面積,用a,b和h分別表示梯形的上底、下底和高,那么梯形面積的計算公式應怎樣表示?教案一.files/image004.jpg"> s=(a+b)h÷2 7.計算梯形的面積。 (1)用面積公式計算。 (3+5)×4÷2 =8×4÷2 =32÷2 =16(厘米2) 分別說出每步求出的是什么? 為什么要除以2? (2)能不能把這一個梯形轉化成已學過的圖形呢? 學生討論,動手試驗。教案一.files/image005.jpg"> 把梯形沿虛線剪開,分成兩個三角形,兩個三角形面積的和就是梯形的面積。 3×4÷2+5×4÷2 =(3×4+5×4)÷2 =(3+5)×4÷2 與梯形面積計算公式相符。(三)鞏固反饋 1.出示例題。 一條新挖的渠道,橫截面是梯形(如圖)。渠口寬2.8米,渠底寬1.4米,渠深1.2米。它的橫截面的面積是多少平方米?教案一.files/image006.jpg">