九年級(jí)上《解一元二次方程—公式法》說課稿
通過這兩個(gè)情境問題的設(shè)計(jì),情境1來源于實(shí)際生活,是學(xué)生熟悉的題型,對(duì)于大多數(shù)學(xué)生都容易列出方程,目的是為了讓每個(gè)學(xué)生主動(dòng)加入到學(xué)習(xí)數(shù)學(xué)活動(dòng)中,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和自信心。情境2通過講故事的形式貼近學(xué)生,拉近老師和學(xué)生之間的距離,吸引學(xué)生的好奇心和新鮮感,為進(jìn)一步探究營造了輕松愉悅的氛圍。
2、合作探究,獲得新知(12分鐘)
通過兩個(gè)情境設(shè)計(jì),讓學(xué)生合作討論,我在討論的過程中精心組織引導(dǎo)并讓學(xué)生分別列出如下兩個(gè)方程:
情境1設(shè)長方形綠地寬為x米,列方程得:
x(x+10)=900 即x²+10x–900=0 ①
情境2設(shè)竹竿為x尺,則門框?qū)挒椋▁–4)尺,門框高為(x–2)尺得方程:
x²=(x-4)²+(x-2)² 即x²+12x-20=0 ②
觀察剛才所得的兩個(gè)方程:
x²+10x-900=0 ①
x²+12x-20=0 ②
問題1觀察與討論:(1)方程①中未知數(shù)的個(gè)數(shù)和最高數(shù)各是多少?方程②呢?
(2)討論這兩個(gè)方程有什么特點(diǎn)?
第一個(gè)問題讓一位學(xué)生回答,第二個(gè)問題學(xué)生自己討論去尋找方程的特點(diǎn),我加以引導(dǎo),目的是培養(yǎng)學(xué)生的觀察能力。
師生共同得出方程的特點(diǎn):①方程兩邊都是整式②方程中只含有一個(gè)未知數(shù)③未知數(shù)的最高次數(shù)是2
問題2.對(duì)照一元一次方程,讓學(xué)生對(duì)此類新方程下定義.(板書課題)
通過對(duì)舊知識(shí)的比較,學(xué)生很容易得出這種方程是一元二次方程,此時(shí)(板書課題)目的是通過類比培養(yǎng)學(xué)生下定義的能力。
問題3.討論:一元二次方程和一元一次方程有什么聯(lián)系和區(qū)別
通過讓學(xué)生討論、總結(jié)兩者的聯(lián)系和區(qū)別,求同存異,目的是讓學(xué)生加深對(duì)一元二次方程概念的認(rèn)識(shí),培養(yǎng)學(xué)生的類比、歸納能力。
問題4.探討:你能寫出所有的一元一次方程嗎?如不能,則對(duì)照一元一次方程的一般形式,如何一般地表示一元二次方程呢?
通過這個(gè)問題讓學(xué)生舉例探索,我加以引導(dǎo)得出一元二次方程有無數(shù)個(gè),寫不完,能否用類比一元一次方程的一般形式表示,得出用一元二次方程的一般形式ax²+bx+c=0來表示,目的是讓學(xué)生了解特殊到一般的數(shù)學(xué)思想,培養(yǎng)學(xué)生通過探索活動(dòng)發(fā)現(xiàn)規(guī)律,解決問題的探索能力和歸納能力.
得出一般形式后師生互動(dòng),并引導(dǎo)學(xué)生完成下面的問題:
問題5如何識(shí)別方程中各項(xiàng)名稱及常數(shù)?
通過這個(gè)問題的設(shè)計(jì),讓學(xué)生認(rèn)識(shí)一元二次方程一般形式的二次項(xiàng)、一次項(xiàng)和常數(shù)項(xiàng)及系數(shù)。
問題6思考:二次項(xiàng)系數(shù)a的取值范圍并回答為什么?(強(qiáng)調(diào)a≠0)
通過此問題設(shè)計(jì),讓學(xué)生意識(shí)到二次項(xiàng)系數(shù)a≠0這個(gè)條件,培養(yǎng)學(xué)生觀察意識(shí)。
3、講解例題、體驗(yàn)新知(8分鐘)
例1 :下列方程中哪些是一元二次方程?試說明理由。
(1)x²+2x–4=0(2)4x²=9 (3) +1=x² (4) 3y²–5x=7 (5) x²–4=(x+2)²
例2:把方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng)(邊引導(dǎo)邊板書規(guī)范步驟)