圓的周長
同學們得出的結論是否具有普遍性呢?我們借助大屏幕來進行驗證。
通過演示,你再次發現了什么?
4. 認識圓周率。
師:其實,早就有人研究了周長與直徑的關系,發現任意一個圓的周長與它的直徑的比值是一個固定不變的數,我們把它叫做圓周率,用希臘字母π表示。
師:你知道第一個發現圓周率的人是誰嗎?讓我們一起來了解一下。
看后,你想說點什么?
為了計算的方便,在計算時,π只取它的近似值3.14就可以了。
5. 總結周長計算公式。
師:現在,我們知道了周長和直徑的比值叫做π,怎樣計算圓的周長這個問題你能解決嗎?
如果知道圓的半徑,該怎樣求圓的周長呢?
從公式中可以看出要求圓的周長,必須知道什么?
設計意圖:小組分工合作,動手測量圓的周長和直徑,然后就測量結果展開討論,自己總結出圓周長的計算公式,主動地投入到知識規律的形成和發現過程中。
三、實踐應用,解決問題。
1. 只列式,不計算。
d = 18m,求c d = 5.8cm,求c
r = 6cm,求c r = 3.5m,求c
2. 市紅旗渠廣場上有一個直徑為5米的圓形噴水池,步行一圈大約有多少米?
3. 安林路上的圓形大轉盤的半徑約是8米,汽車繞它轉一圈能走多少米?
四、課堂小結,交流收獲。
這節課,你有什么新的收獲能跟大家說說嗎?看到同學們有這么多的收獲,老師真為大家感到高興。
習題設計意圖:
1. 基礎性練習,直觀性強,使學生進一步鞏固圓的周長與直徑、半徑的關系的認識,鞏固了圓的周長計算公式。
2. 解決生活問題,鍛煉了學生的分析和理解能力,提高解決問題的能力。也體現了數學與生活的緊密聯系。