工程問題應用題(精選6篇)
工程問題應用題 篇1
4.2.10
教學目標 :
1、理解比較抽象的工作總量、工作效率、工作時間的數量關系。
2、掌握一般工程問題的結構特征。
3、學會解題方法,會正確解答一般的工程問題。
教學重點:學會解題方法,會正確解答一般的工程問題。
教學難點 :理解比較抽象的工作總量、工作效率、工作時間的數量關系。
教學準備:投影片。
教學過程 :
一、復習準備:
1、口答,并說出數量關系式。
(1)甲乙合做60件產品,甲每天做3件,乙每天做2件。他們要幾天完成?
60÷(3+2)=12天
工作總量÷工作效率=工作時間
(2)加工80個零件,甲用4小時完成。平均每小時加工多少個零件?
80÷4=20(個)
工作總量÷工作時間=工作效率
2、回答,說說你是怎么想的。
(1)加工一批零件,甲用4小時完成。平均每小時完成這批零件的幾分之幾?
1÷4=
(把工作總量看作“1”)
(2)一項工程,甲單獨修建,需要4天完成,乙單獨修建,需要8天完成。
①甲隊獨修,每天完成全工程的( )。
②乙隊獨修,每天完成全工程的( )。
③兩隊合修,每天完成全工程的( )。
小結:剛才這幾道題中,工作總量所以用“1”表示,因為工作總量不再是一個具體的數量,而工作效率是一個分數,這個分數實質上是單位時間完成了工作總量的幾分之幾。
二、教學新課。
1、出示例2.(小黑板)
一項工程,由甲工程隊單獨施工,需8天完成。由乙工程隊單獨施工,需要12天完成。兩隊共同施工需要多少天完成?
(1)審題后,想:這道題需我們求什么?你可以根據哪個關系式來解答?
(2)學生嘗試做,并同桌交流。
(3)反饋說明。
1÷(+)=1÷(+)=1÷=4(天)
(把工作總量看作“1”,兩隊的工作效率就是+。)
教師:如果不把工作總量看作“1”,而是看作2、3、5、10……結果會怎樣?
學生任選一個數列式計算。
小結:計算結果是一樣的。不過看作“1”是最簡捷、最常用的。
2、練一練。
(1)填空。
①甲做一項工作需5天完成,每天完成這項工作的( ),3天完成這項工作的( )。
②一項工程,甲隊獨做需要36天完成,乙隊獨做需要45天完成。兩隊合做,一天可以完成這項工程的( ),( )天可以完成。
(2)修一條公路,甲隊獨做需10天,乙隊獨做需15天,甲乙兩隊合做,幾天可以完成?
(全班練,抽學生寫在投影片上,同桌互說是怎么想的)
3、小結:四人小組討論。剛才練的題有什么特點?我們是怎么解的?
教師:這就是我們今天學的工程問題。(出示課題)
三、鞏固練習
1、變式練習
打印一份稿件,甲單獨干要10小時,乙單獨干要12小時,丙單獨干要15小時。
(1)甲、乙、丙三人合打1小時,完成這份稿件的幾分之幾?
++=
(2)三人合打一小時后,還剩下幾分之幾?
1-=
(3)甲、乙、丙三人合干,幾小時可以完成?
1÷(++)=4(小時)
(4)甲、乙兩人合干5小時,可以完成這份稿件的幾分之幾?
(+)×5=
(四人小組交流,想想還可以提出哪些問題并解答。)
2、看書,質疑。
四、教學小結:今天我們學習了什么?你是怎樣來解答這些應用題的?
五、作業 :《作業 本》P70[67]
工程問題應用題 篇2
教學內容:小學數學第十一冊第98頁例10
教材簡析:工程問題應用是分數應用題中的一個特例。它的數量關系和解題思路與整數工程應用題基本相同。本節教學,主要是用整數工程應用題引入,讓學生根據具體數量解答,然后把工作總量抽象成一個整體,用單位“1”表示。通過教學,使學生理解工程問題的實際意義,掌握它的解題方法,培養學生的分析,對比能力和綜合、概括能力,提高他們的解題能力,發展他們的智力。
教學目標 :1.認識分數工程問題的特點。
2.理解、掌握分數工程問題的數量關系,解題思路和方法。
3.能正確解答分數工程問題。
教具、學具準備:投影片幾張。
過程設計:
一、復習引入:
口答列式:
1.修一條100米長的跑道,5天修完。平均每天修多少米?
2.一項工程,5天完成,平均每天完成幾分之幾?
3.修一條100米長的跑道,每天修25米,幾天修完?
4.一項工程,每天完成1/8,幾天可以完成全工程?
(通過這組題,復習工程問題的三個基本數量關系,以及工作總量、工作效率、不定具體的數量應樣表示,為學習用分數解答奠定基礎。)
二、新課:
1、引出課題:工程問題應用題.
2、教學例10
(1)出示例10:一段公路長30千米,甲隊單獨修10天完成,乙隊單獨修15天完成,兩隊合修幾天可以完成?
(2)審題后,根據條件問題列成下表,分析解答,講算理:
工作總量
甲獨修完成時間
乙獨修完成時間
兩隊合修完成時間
30天
10天
15天
0
3、改變例10中的工作總量,讓學生猜一猜,算一算,兩隊合修幾天可以完成?接上表在工作總量欄中寫出:60千米、90千米。
(1)讓學生猜完后,計算:
(2)訂正后問:為什么總千米數不同,而兩隊 合修的天數都一樣?
(通過工作總量的改變,讓學生猜猜、算算合修的天數,激發學生學習工程問題的興趣,引起思考,讓學生帶著強烈的好奇心投入到新課的學習中。)
4、如果去掉“長30千米”這個條件, 改為“修一段公路”,還能不能解答?
(1)組織學生討論:
(2)列式解答、講算理.
(3)比較與歸納:
再討論:
1)這題與上面的練習題材有什么相同和不同的地方?
2)兩題的解題思路是否相同呢?
3)用分數解答工程問題的解題特點是什么?
4)指出例10這樣的題目可用兩種方法解答。
(通過學習討論,引導學生認識分數工程問題的特征,掌握了用分數解答工程問題的方法。)
三、練習:
1、第98頁做一做。(通過基本練習,讓學生及時掌握、鞏固工程問題的解法。)
2、第99頁 2.
3、判斷題。
(通過辨析、使學生進一步明確解答工程問題,工程總量和工作效率必須要相對應。加深學生對工程民問題應用題的特征的理解,牢固掌握解題方法。)
四、 總結
工程問題應用題 篇3
4.2.10工程問題應用題
教學目標 :
1、理解比較抽象的工作總量、工作效率、工作時間的數量關系。
2、掌握一般工程問題的結構特征。
3、學會解題方法,會正確解答一般的工程問題。
教學重點:學會解題方法,會正確解答一般的工程問題。
教學難點 :理解比較抽象的工作總量、工作效率、工作時間的數量關系。
教學準備:投影片。
教學過程 :
一、復習準備:
1、口答,并說出數量關系式。
(1)甲乙合做60件產品,甲每天做3件,乙每天做2件。他們要幾天完成?
60÷(3+2)=12天
工作總量÷工作效率=工作時間
(2)加工80個零件,甲用4小時完成。平均每小時加工多少個零件?
80÷4=20(個)
工作總量÷工作時間=工作效率
2、回答,說說你是怎么想的。
(1)加工一批零件,甲用4小時完成。平均每小時完成這批零件的幾分之幾?
1÷4=
(把工作總量看作“1”)
(2)一項工程,甲單獨修建,需要4天完成,乙單獨修建,需要8天完成。
①甲隊獨修,每天完成全工程的( )。
②乙隊獨修,每天完成全工程的( )。
③兩隊合修,每天完成全工程的( )。
小結:剛才這幾道題中,工作總量所以用“1”表示,因為工作總量不再是一個具體的數量,而工作效率是一個分數,這個分數實質上是單位時間完成了工作總量的幾分之幾。
二、教學新課。
1、出示例2.(小黑板)
一項工程,由甲工程隊單獨施工,需8天完成。由乙工程隊單獨施工,需要12天完成。兩隊共同施工需要多少天完成?
(1)審題后,想:這道題需我們求什么?你可以根據哪個關系式來解答?
(2)學生嘗試做,并同桌交流。
(3)反饋說明。
1÷(+)=1÷(+)=1÷=4(天)
(把工作總量看作“1”,兩隊的工作效率就是+。)
教師:如果不把工作總量看作“1”,而是看作2、3、5、10……結果會怎樣?
學生任選一個數列式計算。
小結:計算結果是一樣的。不過看作“1”是最簡捷、最常用的。
2、練一練。
(1)填空。
①甲做一項工作需5天完成,每天完成這項工作的( ),3天完成這項工作的( )。
②一項工程,甲隊獨做需要36天完成,乙隊獨做需要45天完成。兩隊合做,一天可以完成這項工程的( ),( )天可以完成。
(2)修一條公路,甲隊獨做需10天,乙隊獨做需15天,甲乙兩隊合做,幾天可以完成?
(全班練,抽學生寫在投影片上,同桌互說是怎么想的)
3、小結:四人小組討論。剛才練的題有什么特點?我們是怎么解的?
教師:這就是我們今天學的工程問題。(出示課題)
三、鞏固練習
1、變式練習
打印一份稿件,甲單獨干要10小時,乙單獨干要12小時,丙單獨干要15小時。
(1)甲、乙、丙三人合打1小時,完成這份稿件的幾分之幾?
++=
(2)三人合打一小時后,還剩下幾分之幾?
1-=
(3)甲、乙、丙三人合干,幾小時可以完成?
1÷(++)=4(小時)
(4)甲、乙兩人合干5小時,可以完成這份稿件的幾分之幾?
(+)×5=
(四人小組交流,想想還可以提出哪些問題并解答。)
2、看書,質疑。
四、教學小結:今天我們學習了什么?你是怎樣來解答這些應用題的?
五、作業 :《作業 本》P70[67]
工程問題應用題 篇4
《工程問題應用題》教學設計
教學內容:小學數學第十一冊第98頁例10
教材簡析:工程問題應用是分數應用題中的一個特例。它的數量關系和解題思路與整數工程應用題基本相同。本節教學,主要是用整數工程應用題引入,讓學生根據具體數量解答,然后把工作總量抽象成一個整體,用單位“1”表示。通過教學,使學生理解工程問題的實際意義,掌握它的解題方法,培養學生的分析,對比能力和綜合、概括能力,提高他們的解題能力,發展他們的智力。
教學目標 :1.認識分數工程問題的特點。
2.理解、掌握分數工程問題的數量關系,解題思路和方法。
3.能正確解答分數工程問題。
教具、學具準備:投影片幾張。
過程設計:
一、復習引入:
口答列式:
1.修一條100米長的跑道,5天修完。平均每天修多少米?
2.一項工程,5天完成,平均每天完成幾分之幾?
3.修一條100米長的跑道,每天修25米,幾天修完?
4.一項工程,每天完成1/8,幾天可以完成全工程?
(通過這組題,復習工程問題的三個基本數量關系,以及工作總量、工作效率、不定具體的數量應樣表示,為學習用分數解答奠定基礎。)
二、新課:
1、引出課題:工程問題應用題.
2、教學例10
(1)出示例10:一段公路長30千米,甲隊單獨修10天完成,乙隊單獨修15天完成,兩隊合修幾天可以完成?
(2)審題后,根據條件問題列成下表,分析解答,講算理:
工作總量
甲獨修完成時間
乙獨修完成時間
兩隊合修完成時間
30天
10天
15天
0
3、改變例10中的工作總量,讓學生猜一猜,算一算,兩隊合修幾天可以完成?接上表在工作總量欄中寫出:60千米、90千米。
(1)讓學生猜完后,計算:
(2)訂正后問:為什么總千米數不同,而兩隊 合修的天數都一樣?
(通過工作總量的改變,讓學生猜猜、算算合修的天數,激發學生學習工程問題的興趣,引起思考,讓學生帶著強烈的好奇心投入到新課的學習中。)
4、如果去掉“長30千米”這個條件, 改為“修一段公路”,還能不能解答?
(1)組織學生討論:
(2)列式解答、講算理.
(3)比較與歸納:
再討論:
1)這題與上面的練習題材有什么相同和不同的地方?
2)兩題的解題思路是否相同呢?
3)用分數解答工程問題的解題特點是什么?
4)指出例10這樣的題目可用兩種方法解答。
(通過學習討論,引導學生認識分數工程問題的特征,掌握了用分數解答工程問題的方法。)
三、練習:
1、第98頁做一做。(通過基本練習,讓學生及時掌握、鞏固工程問題的解法。)
2、第99頁 2.
3、判斷題。
(通過辨析、使學生進一步明確解答工程問題,工程總量和工作效率必須要相對應。加深學生對工程民問題應用題的特征的理解,牢固掌握解題方法。)
四、 總結
工程問題應用題 篇5
4.2.10工程問題應用題
教學目標 :
1、理解比較抽象的工作總量、工作效率、工作時間的數量關系。
2、掌握一般工程問題的結構特征。
3、學會解題方法,會正確解答一般的工程問題。
教學重點:學會解題方法,會正確解答一般的工程問題。
教學難點 :理解比較抽象的工作總量、工作效率、工作時間的數量關系。
教學準備:投影片。
教學過程 :
一、復習準備:
1、口答,并說出數量關系式。
(1)甲乙合做60件產品,甲每天做3件,乙每天做2件。他們要幾天完成?
60÷(3+2)=12天
工作總量÷工作效率=工作時間
(2)加工80個零件,甲用4小時完成。平均每小時加工多少個零件?
80÷4=20(個)
工作總量÷工作時間=工作效率
2、回答,說說你是怎么想的。
(1)加工一批零件,甲用4小時完成。平均每小時完成這批零件的幾分之幾?
1÷4=
(把工作總量看作“1”)
(2)一項工程,甲單獨修建,需要4天完成,乙單獨修建,需要8天完成。
①甲隊獨修,每天完成全工程的( )。
②乙隊獨修,每天完成全工程的( )。
③兩隊合修,每天完成全工程的( )。
小結:剛才這幾道題中,工作總量所以用“1”表示,因為工作總量不再是一個具體的數量,而工作效率是一個分數,這個分數實質上是單位時間完成了工作總量的幾分之幾。
二、教學新課。
1、出示例2.(小黑板)
一項工程,由甲工程隊單獨施工,需8天完成。由乙工程隊單獨施工,需要12天完成。兩隊共同施工需要多少天完成?
(1)審題后,想:這道題需我們求什么?你可以根據哪個關系式來解答?
(2)學生嘗試做,并同桌交流。
(3)反饋說明。
1÷(+)=1÷(+)=1÷=4(天)
(把工作總量看作“1”,兩隊的工作效率就是+。)
教師:如果不把工作總量看作“1”,而是看作2、3、5、10……結果會怎樣?
學生任選一個數列式計算。
小結:計算結果是一樣的。不過看作“1”是最簡捷、最常用的。
2、練一練。
(1)填空。
①甲做一項工作需5天完成,每天完成這項工作的( ),3天完成這項工作的( )。
②一項工程,甲隊獨做需要36天完成,乙隊獨做需要45天完成。兩隊合做,一天可以完成這項工程的( ),( )天可以完成。
(2)修一條公路,甲隊獨做需10天,乙隊獨做需15天,甲乙兩隊合做,幾天可以完成?
(全班練,抽學生寫在投影片上,同桌互說是怎么想的)
3、小結:四人小組討論。剛才練的題有什么特點?我們是怎么解的?
教師:這就是我們今天學的工程問題。(出示課題)
三、鞏固練習
1、變式練習
打印一份稿件,甲單獨干要10小時,乙單獨干要12小時,丙單獨干要15小時。
(1)甲、乙、丙三人合打1小時,完成這份稿件的幾分之幾?
++=
(2)三人合打一小時后,還剩下幾分之幾?
1-=
(3)甲、乙、丙三人合干,幾小時可以完成?
1÷(++)=4(小時)
(4)甲、乙兩人合干5小時,可以完成這份稿件的幾分之幾?
(+)×5=
(四人小組交流,想想還可以提出哪些問題并解答。)
2、看書,質疑。
四、教學小結:今天我們學習了什么?你是怎樣來解答這些應用題的?
五、作業 :《作業 本》P70[67]
工程問題應用題 篇6
教學內容:小學數學第十一冊第98頁例10
教材簡析:工程問題應用是分數應用題中的一個特例。它的數量關系和解題思路與整數工程應用題基本相同。本節教學,主要是用整數工程應用題引入,讓學生根據具體數量解答,然后把工作總量抽象成一個整體,用單位“1”表示。通過教學,使學生理解工程問題的實際意義,掌握它的解題方法,培養學生的分析,對比能力和綜合、概括能力,提高他們的解題能力,發展他們的智力。
教學目標 :1.認識分數工程問題的特點。
2.理解、掌握分數工程問題的數量關系,解題思路和方法。
3.能正確解答分數工程問題。
教具、學具準備:投影片幾張。
過程設計:
一、復習引入:
口答列式:
1.修一條100米長的跑道,5天修完。平均每天修多少米?
2.一項工程,5天完成,平均每天完成幾分之幾?
3.修一條100米長的跑道,每天修25米,幾天修完?
4.一項工程,每天完成1/8,幾天可以完成全工程?
(通過這組題,復習工程問題的三個基本數量關系,以及工作總量、工作效率、不定具體的數量應樣表示,為學習用分數解答奠定基礎。)
二、新課:
1、引出課題:工程問題應用題.
2、教學例10
(1)出示例10:一段公路長30千米,甲隊單獨修10天完成,乙隊單獨修15天完成,兩隊合修幾天可以完成?
(2)審題后,根據條件問題列成下表,分析解答,講算理:
工作總量
甲獨修完成時間
乙獨修完成時間
兩隊合修完成時間
30天
10天
15天
0
3、改變例10中的工作總量,讓學生猜一猜,算一算,兩隊合修幾天可以完成?接上表在工作總量欄中寫出:60千米、90千米。
(1)讓學生猜完后,計算:
(2)訂正后問:為什么總千米數不同,而兩隊 合修的天數都一樣?
(通過工作總量的改變,讓學生猜猜、算算合修的天數,激發學生學習工程問題的興趣,引起思考,讓學生帶著強烈的好奇心投入到新課的學習中。)
4、如果去掉“長30千米”這個條件, 改為“修一段公路”,還能不能解答?
(1)組織學生討論:
(2)列式解答、講算理.
(3)比較與歸納:
再討論:
1)這題與上面的練習題材有什么相同和不同的地方?
2)兩題的解題思路是否相同呢?
3)用分數解答工程問題的解題特點是什么?
4)指出例10這樣的題目可用兩種方法解答。
(通過學習討論,引導學生認識分數工程問題的特征,掌握了用分數解答工程問題的方法。)
三、練習:
1、第98頁做一做。(通過基本練習,讓學生及時掌握、鞏固工程問題的解法。)
2、第99頁 2.
3、判斷題。
(通過辨析、使學生進一步明確解答工程問題,工程總量和工作效率必須要相對應。加深學生對工程民問題應用題的特征的理解,牢固掌握解題方法。)
四、 總結