《圓錐的體積》教學案例(通用16篇)
《圓錐的體積》教學案例 篇1
教學內容:
本課是九年義務教育人教版小學數學第十二冊的內容,是在學習了圓柱的體積計算和圓錐的特征的基礎上進行教學的。教學目標:1、引導學生通過實驗推導出圓錐體積計算公式,并能運用公式計算圓錐的體積,解決有關的實際問題。2、培養學生的觀察,猜測、操作能力。3、培養學生良好的合作探究意識,引導學生掌握正確的學習方法。教學重點、難點、關鍵:重點:圓錐的體積計算公式難點:圓錐體積計算公式的推導過程關鍵:學生通過實驗操作,理解“圓錐的體積等于與它等底等高圓柱體積的三分之一。”教學過程:一、聯系生活,激趣導入師:同學們,老師有一個問題,看誰能幫助我解決。有兩種冰淇淋,一種是圓柱形的,2元一支,一種是圓錐形的,0.5元一支,你們說老師買哪種冰淇淋合算呢?生有的說買圓柱形的合算,有的說買圓錐形的合算。(大家爭論不休)(這時,我把這兩種不同意見的學生分成兩組,各派代表說說自己的理由)。生甲:圓柱形上下一樣粗,冰淇淋裝得多些,所以買圓柱形合算。生乙:那也不一定。如果圓錐形冰淇淋的底比圓柱形的底大些,那么圓錐形的冰淇淋就不一定比圓柱形的少。生甲:雖然圓錐形的底大,但它的上面是越來越小,這樣冰淇淋裝得還是少些,所以買圓錐形的不合算,還是買圓柱形的好。生乙:不錯,圓錐形的上面是越來越小,但如果圓錐形比圓柱形高些呢?……(通過辯論,學生逐漸明白了,合不合算,應該與它們的體積有關。)師:為了解決這個問題,我們先來學習“圓錐的體積。”(板書課題)二、探究新知1、猜測:你們認為圓錐的體積和什么圖形的體積聯系密切?(討論后,大家一致認為應該與圓柱的體積有聯系。)2、實驗:下面我們來分組做實驗,看看它們之間有什樣的聯系?(1)請各組拿出實驗材料(課前準備好的)每組等底等高,等底不等高,等高不等底的圓柱和圓錐各一對,黃沙一袋。另外,每組發一份實驗報告單。(見下表)
實驗報告 一、實驗目的:研究圓錐的體積公式。 二、實驗步驟:(1)比較圓錐,圓柱的底和高。(2)在圓錐里裝滿沙,再倒入圓柱內,倒幾次才能正好把圓柱裝滿。 (3)將實驗結果填入下表。 圓錐、圓柱的特征 次數 等底等高 等底不等高 等高不等底 不等高不等底 三、問題討論:通過實驗,你發現圓柱的體積與圓錐的體積之間有什么關系?
。2)介紹實驗方法:先在圓錐內裝滿沙土,圓錐口要抹平,然后把沙土倒入圓柱內,看看幾次可將圓柱倒滿。(3)學生小組合作邊實驗邊填報告單。(4)匯報實驗結果。大家都發現:圓錐的體積等于和它等底等高的圓柱體積的三分之一。(5)驗證實驗結果(因為沙粒之間有空隙,結果不十分精確。老師拿出透明的等底等高的圓錐和圓柱一對,用水作實驗,進一步驗證其結果。)(6)推導出圓錐體積計算公式。3、公式運用。出示例1:一個圓錐形的零件,底面積是19平方厘米,高12厘米,這個零件的體積是多少?(學生獨立列式計算后集體訂正)4、質疑:“圓錐的體積是圓柱體積的三分之一”這句話正確嗎?三、巧設練習,開拓思維。1、填空。(1)等底等高的圓錐和圓柱,圓柱的體積是圓錐體積的( ),圓錐的體積是圓柱體積的( )。(2)把一個圓柱木塊削成一個最大的圓錐,應削去圓柱體積的( )2、開放題。有一個近似于圓錐的稻谷堆,測得它的底面周長是12.56米,高是1.2米,這堆稻谷的體積是多少立方米?3、解決課伊始的問題。假如圓柱形的冰淇淋和圓錐形的冰淇淋等底等高,你們說買哪種合算呢?4、探究題師:我們學習的是一些規則圖形的體積計算公式,但現實生活中有很多東西都是不規則的,如:雞蛋、不規則的石塊等,如何測量它們的體積呢?四、課堂總結。師:通過這節課的學習,你知道些什么?你掌握了哪些學習方法?教學反思:這節課有兩大特點。一是教師大膽放手,讓學生自己動手實踐,自主探索,合作交流,從而培養了學生的自主學習的能力。二是改變了以往的單項實驗為多項實驗。以往在教圓錐的體積公式推導時,都是直接用等底等高的一對圓柱和圓錐去實驗,我認為這樣做,從表面上看是讓學生在動手實驗,而實質上是在重操前人研究的實驗結果,沒有達到實驗的真正目的。本節課中的實驗設計是分別用等底等高、等底不等高、等高不等底、高底都不等的圓柱和圓錐去實驗,讓學生大膽嘗試,在自主探索與合作交流中主動獲取知識。這樣學生不僅能真正理解、掌握知識,而且還能感受到成功的喜悅,增強了他們學習的自信心。
《圓錐的體積》教學案例 篇2
教學內容:圓錐的體積
教材第25、26頁的內容
教學目標:
1. 使學生理解和掌握圓錐體積的計算公式,會運用公式計算圓錐的體積并解決簡單的實際問題。
2.在推導公式過程中,通過小組合作、動手實驗的方法,培養學生分析、推理的能力及抽象概括能力。
3.在探究公式的過程中,向學生滲透“事物之間是相互聯系”的,并通過活動,使學生形成良好的合作探究意識。
教學重點:掌握圓錐體積的計算公式。
教學難點:圓錐體積公式的推導過程。
教學過程:
一、復習導入:
1、圓柱的體積的計算公式是什么?字母公式又怎樣表示?
2、投影出示圓錐的幾何圖形,學生指圖說出圓錐的底面、側面和高。
3、前面我們認識了圓錐,圓錐的體積怎樣計算呢?他又是怎樣推導出來的呢?這節課我們就來研究這個問題。(板書課題:圓錐的體積)
二、教學實施
1、創設情境,引發猜想
①、一天,一只小白兔去“動物超市”購物,它在冷飲專柜買了個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去冷飲專柜里買了一個圓錐型的雪糕,一溜煙跑了過來。(圓柱形和圓錐形雪糕是等底等高的)
、、引導學生圍繞問題展開討論。問題一:狐貍貪婪的問:“小白兔,用我手中的雪糕和你換怎么樣”?問題二:狐貍手中又多了個同樣大小的圓錐形雪糕。這時候它們換你感覺公平嗎?問題三:如果你是小白兔,狐貍手中有幾個圓錐形雪糕你才和它換?學習了“圓錐的體積”后大家就會明白這個問題了。
2、自主探索,操作實驗
、、引導學生觀察用來實驗的圓錐、圓柱的特點。
用老師已經準備好的材料,看一看,比一比,有什么特點嗎?
。▽W生發現等底等高)(師板書等底等高)
、凇W生實驗:
你想怎么實驗?(小組可以議一議)(老師指導:倒一下)
請大家以小組為單位進行實驗,在實驗中,注意思考三個問題:
a:你們小組是怎樣進行實驗的?
b:通過實驗,你們發現了所給的圓錐、圓柱在體積上有什么關系?
c:根據這個關系怎樣求出圓錐的體積?
。ń處熤笇В簽榱俗寣嶒灨鼫蚀_些,可以用尺子將沙子劃平再倒入)
③、學生匯報,完成計算公式的推導:
師:你們實驗完了嗎?得出結論了嗎?得出公式了嗎?同學們完全投入到實驗中了,一定有不少的收獲和發現,下面我們來交流一下:你們小組內先交流一下,選三四名同學到前面來匯報。哪個小組同學匯報?哪個小組同學補充?
。▽W生實驗并講解,教師糾正:實驗總是不十分準確,有可能差點。)
一名學生匯報,師板書。
生:我們把圓錐裝滿水,倒入這個圓柱體當中,正好倒了3次倒滿,得出圓錐的體積等于這個圓柱的體積的 ,因為圓柱的體積v=sh,所以圓錐的體積v =1/3sh
。ń處煱鍟﹫A錐的體積= = = 1/3 底面積高
等底等高{v=1/3sh(圓柱的體積怎樣求?圓錐的體積怎樣求?)
④、反饋:其他小組也是這樣實驗的嗎?有什么不一樣的?
生:我們小組是用沙子來做實驗的,結論一樣。
師:我發現那個小組用的是大的圓錐和圓柱,也是一樣的嗎?
⑤、(反例子)強調等底等高:
同學們經過實驗,發現了用來實驗的圓錐的體積等于圓柱的體積的1/3,老師也想做實驗:出示一個非常大的圓柱,一個很小的圓錐,這個圓柱的體積是圓錐體積的3倍嗎?(你有什么看法、為什么?)
強調:圓錐的體積等于與它等底等高的圓柱的體積的1/3。(讓學生說)
、、反饋:
至此,我們已經推導出了圓錐的體積公式,誰能再告訴老師,圓錐的體積公式是什么?
底面積乘高求的是誰的體積?
字母公式是什么?v、s、h表示什么?
回頭看,誰能回顧一下圓錐體積推導過程?(我們把圓錐體裝滿沙子,倒入與它等底等高的圓柱體當中,正好倒了3次倒滿,得出圓錐的體積等于與它等底等高的圓柱的體積的1/3,利用這一關系推導出圓錐的體積:v錐 =1/3 v柱 =1/3 sh)
。ㄆ渌瑢W練習說一下)
找條件:根據這個公式就可以求出圓錐的體積,要計算圓錐的體積需要知道那些條件?
3、算一算:
運用這個公式就可求圓錐的體積了,請大家看一道題:
如果小麥堆的底面半徑為2米,高為1.5米,你能算出小麥堆的體積嗎?
學生自己解決問題,集體訂正。
反饋:計算公式上有無漏洞、計算上的指導(約分)、(怎么算得這么快,有好的方法么?)、單位名稱上的指導(立方)。
師:其他同學有什么不一樣的?(錯的同學是公式的問題?計算的問題?)
4、完成26頁的練習
5、問題解決。故事中的小白兔和狐貍怎樣交換才公平合理呢?這需要什么前提條件?
《圓錐的體積》教學案例 篇3
一、提出問題,激發興趣。
師:揭示課題后,讓學生自由地說一說用什么方法能求出圓錐的體積。
生1:變成圓柱體。
生2:變成長方體。
生3:放入水中求上漲的水的體積。
生4:把空圓錐裝滿水倒入量杯或量筒。
…………
師:這些方法都很好,都是把圓錐轉化成我們學過的立體圖形。今天,我們共同探究一種更為一般的計算圓錐體積的方法。你愿意選擇哪一種立體圖形來作為研究的工具?
生:圓柱體。
師:為什么呢?
生:因為它和圓錐的共同點很多,都有一個曲面,而且底面都是圓形。
生:我猜想它們的體積之間有一定的聯系。
師:請各小組從實驗器材(兩只圓柱和兩只圓錐容器)中選一只圓柱和圓錐,做實驗來驗證你們的猜想。
二、動手實驗,合作探索。
師:請小組合作,利用圓柱容器、圓錐容器、水進行實驗,共同探究圓柱體積與圓錐體積之間的關系。
6個小組展開合作實驗:有的拿著圓柱,有的拿著圓錐,用圓錐裝水往圓柱里倒,有的用圓柱裝滿水再倒入圓錐,有的觀察水的高度,有的記錄實驗數據。必須說明的是,其中三個小組使用的圓柱和圓錐分別是等底等高的,另外三個小組使用的分別是等底不等高、等高不等底、或底高均不相等的。
三、匯報交流,引出沖突。
師:通過實驗,你們有何發現?
組1:我們實驗時,用圓錐三次裝滿水連續倒在圓柱里,圓柱正好裝滿。這說明圓錐的體積是圓柱體積的1/3。
組2:我們用圓柱裝滿水往圓錐里倒,等到圓錐第三次裝滿水,圓柱里的水也正好倒完。這說明圓柱的體積是圓錐體積的3倍。
組3:我們組實驗的結果與前面兩組基本一致。
組4:我們用圓錐三次裝滿水連續往圓柱里倒,圓柱并沒有裝滿,所以,我們認為圓錐的體積不是圓柱體積的1/3。
組5:我們組實驗時,用圓錐裝滿水往圓柱里倒,倒完第二次后圓柱就滿了。
組6:我們還要快,圓錐第一次裝滿水倒入圓柱后,圓柱就滿了。
《圓錐的體積》教學案例 篇4
教學目標:能用實驗的方法推導出圓錐體積的計算公式,并會用此公式計算出簡單的圓錐的體積。
教學重點:用實驗法推倒出圓錐的體積公式。
教學難點:圓錐體積計算公式:“v圓錐=1/3sh"中乘以的道理和來歷。
教學關鍵:利用等底等高的圓柱體體積公式推導出圓錐體積公式。
教學準備:圓柱以及也圓柱等底等高;等底不等高;等高不等底圓錐。
教學方法:采用啟發討論式、實驗探究式教學,鼓勵學生大膽猜想,引導學生發現問題,并且進行驗證。
教學過程 :
一、出示動手操作的步驟:
1、自選圓錐。
2、測量所選圓錐和圓柱底面和高之間的關系。
3、用所選的圓錐往圓柱里倒水。(圓錐里的水要盡可能的滿)
4、記錄實驗的結果。
學生開始活動。
二、根據實驗的結果整理完成下表:(紅顏色的為學生填寫)
等底等高的圓錐和圓柱
圓錐體積等于圓柱體積三分之一
等底但不等高的圓錐與圓柱
圓錐的高高一些
圓錐體積大于圓柱體積三分之一
圓錐的高矮一些
圓錐體積小于圓柱體積三分之一
等高但不等底的圓錐與圓柱
圓錐的底面大一些
圓錐體積大于圓柱體積三分之一
圓錐的底面小一些
圓錐體積小于圓柱體積三分之一
三、推導圓錐的體積計算公式:
師:通過實驗,你能推出體積的計算公式嗎?
生:圓錐的體積等于和它等底等高的圓柱體積的三分之一。
即:v圓錐=1/3sh
四:小結:
師:我們通過實驗推出了圓錐的體積計算公式,怎么樣?和你猜想的一樣嗎?用你最酷的表情或者動作告訴老師。
反思:
本節課我注重培養
了學生的觀察能力,動手操作的能力,讓學生動手動腦的同時,讓他們互相合作,共同交流,以便達到知識的共享。
興趣是最好的老師。在創設情景中,我用日常生活中的例子激發學生的學習興趣,激發他們的探索精神,特
別是對出現不一樣的探索方法,大力的表揚,在激發學生學習興趣的同時,培養了學生的創造性思維。
總之。這節課我在激發學生興趣的同時,讓學生經歷了知識的獲得過程,體會到成功的喜悅,培養了他們的
思維,根據實際發展了學生的空間觀念。
《圓錐的體積》教學案例 篇5
教學目標
1、能用實驗的方法推導出圓錐體積的計算公式,并會用此公式計算出簡單的圓錐的體積。
2、培養學生空間觀念和邏輯思維能力及實驗操作能力。
3、培養學生合作交流的能力及互相協作的意識。
教學重點:用實驗法推倒出圓錐的體積公式。
教學難點:圓錐體積計算公式:“v圓錐=1/3sh"中乘以的道理和來歷。
教學關鍵:利用等底等高的圓柱體體積公式推導出圓錐體積公式。
教學準備:圓柱以及也圓柱等底等高;等底不等高;等高不等底圓錐。
教學方法:采用啟發討論式、實驗探究式教學,鼓勵學生大膽猜想,引導學生發現問題,并且進行驗證。
教學片段:動手操作,推導圓錐的體積計算公式:
師:今天我們來研究圓錐的體積計算公式,你們先在心里猜一猜圓錐的體積計算公式應該是什么,但不要說出來,等咱們研究過以后,看看誰的猜測是正確的。
一、出示動手操作的步驟:
1、自選圓錐。
2、測量所選圓錐和圓柱底面和高之間的關系。
3、用所選的圓錐往圓柱里倒水。(圓錐里的水要盡可能的滿)
4、記錄實驗的結果。
學生開始活動。
二、根據實驗的結果整理完成下表:(紅顏色的為學生填寫)
等底等高的圓錐和圓柱
圓錐體積等于圓柱體積三分之一
等底但不等高的圓錐與圓柱
圓錐的高高一些
圓錐體積大于圓柱體積三分之一
圓錐的高矮一些
圓錐體積小于圓柱體積三分之一
等高但不等底的圓錐與圓柱
圓錐的底面大一些
圓錐體積大于圓柱體積三分之一
圓錐的底面小一些
圓錐體積小于圓柱體積三分之一
三、推導圓錐的體積計算公式:
師:通過實驗,你能推出體積的計算公式嗎?
生:圓錐的體積等于和它等底等高的圓柱體積的三分之一。
即:v圓錐=1/3sh
四:小結:
師:我們通過實驗推出了圓錐的體積計算公式,怎么樣?和你猜想的一樣嗎?用你最酷的表情或者動作告訴老師。 看來你們今天的收獲真的不小,利用課余時間些一篇數學日記,就寫今天課堂上的猜想——實驗驗證——得出結論——你的心情和想法。
教學反思:
讓學生真正成為活動的主動者,才能讓學生真正的感受自己是學習的主人。在數學課圖形的教學中,根據學習內容和學生年齡的特點,運用激勵猜想,動手操作、實踐驗證的教學方法,會使我們的教學達到最高效、最優化。就如在探究圓錐體積計算方法的學習過程中,學生不再是實驗演示的被動的觀看者,而是參與操作的主動探索者,真正成為學習的主人。在整個學習過程中,學生獲得的不僅是新活的數學知識,更多的獲得了探究學習的科學方法。在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發現自身的價值。同時,在操作與實踐的過程中讓一些學習困難的學生也有參與的興趣,讓他們也能感受數學學習的快樂,使他們懂得他們也可以通過玩掌握到數學的知識。
課的結束讓學生寫數學日記,這樣有利于讓學生學會自我評價,通過日記的方式,對新學的知識進行總結、反思?梢宰寣W生對新學的知識有個再現、再認識的過程,從而發現自己的優勢和不足,形成追求進步的愿望和信心,明確改進的目標和途徑,在學習與發展中不斷進取。讓學生寫數學日記,還有利于師生之間的溝通交流。美國心理學家羅杰斯說過:“成功的教學依賴于一種真誠的尊重和信任的師生關系,依賴于一種和諧安全的課堂氣氛。” 老師通過學生的數學日記,變式的和學生進行了交流,和諧了師生關系,起到了事半功倍的效果
但本節課的教學中,也有不盡人意的地方:
1、因為教具的局限,部分同學沒有親自動手操作,只能做一個參觀者,感到遺憾。
2、在用語言敘述自己的發現時,學生的口語表達欠準確,需要進一步培養學生在數學課堂中的口語表達能力。
《圓錐的體積》教學案例 篇6
對于《圓錐的體積》這一節教學實錄課我感受頗深,尤其是實驗這一環節,使我更深刻地認識到《數學課程標準》指出的“有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式”的重要性。動手操作活動能很好地使大腦處于積極的思維狀態,有利于思維的發展,培養學生良好的思維品質。 教師首先給每個小組配有圓柱和圓錐圓器以及一些沙子,有的組圓柱和圓錐等底等高,有的組等高不等底,有的組等底不等高,還有的組不等高也不等底……
師:你想用什么方法推導圓錐的體積?
生1:我們用圓柱體切割的方法推!
生2:用圓柱體容器和圓錐體容器推!
教師這時讓學生通過實驗的方法來推。
師:實驗時請大家搞清兩點:1.圓柱和圓錐容器底面積和高有怎樣的關系?2.圓錐的體積和圓柱的體積之間有怎樣的關系?
學生實驗后每小組選兩個代表到講臺前!
a組一生實驗時,另一生做講解員講解,發現圓錐和圓柱等底等高時,圓錐的體積是圓柱的三分之一!
b組只拿容器不演示,發現圓錐和圓柱等底但不等高,圓錐體積是圓柱的六分之一!
c組同樣只拿著容器直接匯報演示結果!
……
教師及時將六個組實驗結果列表放在投影上,引導學生分析思考:圓錐和圓柱的體積究竟有怎樣的關系呢?
結論的不確定,讓學生產生了極大的興趣,這時有的學生發現有三組結論是一致的,即當圓錐和圓柱等底等高時,圓錐的體積是圓柱體積的三分之一。這時教師并沒有急切地給出結論,而是又進一步的追問:為什么這些圓錐和圓柱的形狀都不相同而體積之間都有相同的關系呢?這樣的追問,讓學生進步明白做實驗的圓錐和圓柱必須等底等高,這時教師再重新分配容器,每組實驗的容器都是等底等高的,再次讓學生實驗。案例中教師在課堂上讓學生反思不同的操作結果,進而再次操作,自主發現問題、提出問題、分析問題、解決問題。學生不僅切實體驗了知識形成的過程,而且,思維得到了有效的提升,充分發展了思維能力和實踐能力!
通過這樣的教學活動,我們看到,課堂上通過學生的猜想、操作、觀察、比較,讓他們感受到了數學思考過程的條理性,提升了思維的價值,發展了有效的思維方式!
本節課上,我覺得也有些地方需要進一步改進,例如,在鞏固練習這一環節上,練習要有梯度,這節課上一開始練習的幾道題,無論是口答題還是筆答題都是已知圓錐的底面積和高,求圓錐的體積,這樣的題目一是機械重復,二是不能培養學生運用知識的應用能力。我想如果把開始講圓錐特征時用的圓錐實物拿出來,讓學生思考,如果要想知道這個圓錐的體積,怎么辦呢?這時讓學生充分思考后再分組討論交流,學生自然而然地會想到,求圓錐的體積除了要測量圓錐的底面積和高外,還可以測量圓錐的底面半徑和高、底面直徑和高、底面周長和高。
總之,在動手操作活動的學習中,教師要對學生進行適時的引導,學生才能體驗到數學活動充滿著探索性和挑戰性,感受到數學思考的條理性和數學結論的確定性。
《圓錐的體積》教學案例 篇7
教學內容:
冀教版小學數學六年級下冊第40~42頁。
教學目標:
1、知識與技能:知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積。
2、過程與方法:通過觀察、討論、實驗等活動,經歷認識圓錐和探索圓錐體積計算公式的過程
3、情感態度與價值觀:積極參加數學活動,了解圓錐和圓柱之間的聯系獲得探索數學公式的活動經驗。
教學重點:
了解圓錐的特點,探索并理解圓錐體積的計算公式會用公式計算圓錐的體積。
教學難點:
理解圓錐的高和圓錐體積公式中Sh表示的實際意義。
教具學具:
1、等底等高的圓柱和圓錐型容器,一些沙子。
2、多媒體課件。
教學流程:
一、炫我兩分鐘
主持學生指名叫學生回答下列問題
1.圓柱有幾個面?各有什么特點?
2.怎樣計算圓柱的體積?
學生回答問題。
【設計意圖:通過學生主持炫我兩分鐘,使學生復習以前學過的相關知識,在輕松愉快的氛圍中自然引入本節所學知識!
二、創設情境
1.教師先出示一個圓柱形容器,提問:如果想知道這個容器的容積,怎么辦?
2.出示問題情境
最近老師家準備裝修,準備了一堆沙子,可是老師遇到了一個難題,大家和我一起解決好嗎?(出示沙堆圖片),這堆沙子的底面半徑是2米,高是1.5米,工人告訴我要用6立方米沙子,我不知道我準備的這些沙子夠不夠?怎樣計算這堆沙子的體積呢?今天我們就一起來研究一下圓錐體積的計算方法。(板書課題)
【設計意圖:在談話、創設問題情境的過程中,引起學生的認知沖突,從而產生求知欲望!
三、探究新知
嘗試小研究一(課前):了解圓錐的特點
1.觀察圓錐形的物體或圖片,它們有哪些特點?
我的發現
2.圓錐由1個( )面和1個( )面2個面組成,圓錐的底面是一個( ) ,圓錐的側面是一個( ) 。
3.從圓錐頂點到底面圓心的距離是圓錐的( ),用字母( )表示。
《圓錐的體積》教學案例 篇8
教學過程:
一、情境引入:
。1)(老師出示鉛錘):你有辦法知道這個鉛錘的體積嗎?
。2)學生發言:(把它放進盛水的量杯里,看水面升高多少……)
(3)教師評價:這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個愛動腦筋的孩子。
。4)提出疑問:是不是每一個圓錐體都可以這樣測量呢?(學生思考后發言)
。5)引入:如果每個圓錐都這樣測,太麻煩了!類似圓錐的麥堆也能這樣測嗎?(學生發表看法),那我們今天就來共同探究解決這類問題的普遍方法。(老師板書課題)
設計意圖:情景的創設,激發了學生學習的興趣,使學生產生了自己想探索的需求,情緒高漲地積極投入到學習活動中去。
二、新課探究
。ㄒ唬、探究圓錐體積的計算公式。
1、大膽猜測:
。1)圓錐的體積該怎樣求呢?能不能通過我們已學過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
。2)圓錐和我們認識的哪種立體圖形有共同點?(學生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)
。3)請你猜猜圓錐的體積和圓柱的體積有沒有關系呢?有什么關系?(學生大膽猜測后,課件出示一個圓錐與3個底、高都不同的圓柱,其中一個圓柱與圓錐等底等高),請同學們猜一猜,哪一個圓錐的體積與這個圓柱的體積關系最密切?(學生答:等底等高的)
(4)老師拿教具演示等底等高。拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發現“這個圓錐和圓柱是等底等高的。”
(5)學生用上面的方法驗證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)
2、試驗探究圓錐和圓柱體積之間的關系
我們通過試驗來研究等底等高的圓錐體積和圓柱體積的關系。
。1)課件出示試驗記錄單:
a、提問:我們做幾次實驗?選擇一個圓柱和圓錐我們比較什么?
b、通過實驗,你發現了什么?
。2)學生分組用等底等高的圓柱圓錐試驗,做好記錄。教師在組間巡回指導。
。3)匯報交流:
你們的試驗結果都一樣嗎?這個試驗說明了什么?
。4)老師用等底等高的圓柱圓錐裝紅色水演示。
先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?把圓柱裝滿水往圓錐里倒,幾次才能倒完?
(教師讓學生注意記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)
。5)學生拿小組內不等底等高的圓錐,換圓錐做這個試驗幾次,看看有沒有這樣的關系?(學生匯報,有的說我用自己的圓錐裝了5次,才把圓柱裝滿;有的說,我裝了2次半……)
。6)試驗小結:上面的試驗說明了什么?(學生小組內討論后交流)
。ㄟ@說明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)
3、公式推導
(1)你能把上面的試驗結果用式子表示嗎?(學生嘗試)
。2)老師結合學生的回答板書:
圓錐的體積公式及字母公式:
(3)在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)
進一步強調等底等高的圓錐和圓柱才存在這種關系。
設計意圖:放手讓學生自主探究,在實踐中真正去體驗圓柱和圓錐之間的關系。
(二)圓錐的體積計算公式的應用
1、已知圓錐的底面積和高,求圓錐的體積。
(1)出示例2:現在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學生嘗試解決。
。2)提問:已知圓錐的底面積和高應該怎樣計算?
。3)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算。
2、已知圓錐的底面半徑和高,求圓錐的體積。
。1)出示例題:
底面半徑是3平方厘米,高12厘米的圓錐的體積。
。2)學生嘗試解答
。3)提問:已知圓錐的底面半徑和高,可以直接利用公式
v=1/3兀r2h來求圓錐的體積。
3、已知圓錐的底面直徑和高,求圓錐的體積。
。1)出示例3:
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數)
。2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
。3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出沙堆的體積)
(4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數的取舍方法是否正確)
。5)提問
。阂阎獔A錐的底面直徑和高,可以直接利用公式
v=1/3兀(d/2)2h來求圓錐的體積。
設計意圖:公式的延伸讓學生對所學知識做到靈活應用,培養了學生活學活用的本領。
《圓錐的體積》教學案例 篇9
教學目標:
1、通過動手操作參與實驗,發現等底等高的圓柱體和圓錐體之間的關系,從而得出圓錐體的體積公式。
2、能運用公式解答有關的實際問題。
3、滲透轉化、實驗、猜測、驗證等數學思想方法,培養動手能力和探索意識。
教學重點:通過實驗的方法,得到計算圓錐體積的公式。
教學難點:運用圓錐體積公式正確地計算體積。
教學過程:
一、創設情境,引發猜想
在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學交流一下,再向全班同學匯報。
小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了“圓錐的體積”后,就會弄明白這個問題。
二、自主探索,操作實驗
1、出示學習提綱
。1) 利用手中的學具,動手操作,通過試驗,你發現圓柱的體積與圓錐體積之間有什么關系?
。2) 你們小組是怎樣進行實驗的?
。3) 你能根據實驗結果說出圓錐體的體積公式嗎?
。4) 要求圓錐體積需要知道哪兩個條件?
2、小組合作學習
3、回報交流
結論:圓錐的體積是等底等高的圓柱體積的1/3。
公式:v=1/3sh
4、問題解決
小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
5、運用公式解決問題
教學例題1和例題2
三、鞏固練習
1、圓錐的底面積是5,高是3,體積是
2、圓錐的底面積是10,高是9,體積是
3、求下面各圓錐的體積.
。1)底面面積是7.8平方米,高是1.8米.
(2)底面半徑是4厘米,高是21厘米.
。3)底面直徑是6分米,高是6分米.
4、判斷對錯,并說明理由.
。1)圓柱的體積相當于圓錐體積的3倍.( )
(2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2 :1.(。
(3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.(。
四、拓展延伸
一個圓錐的底面周長是314厘米,高是9厘米,它的體積是多少立方厘米?
五、談談收獲
六、作業
《圓錐的體積》教學案例 篇10
【使用說明及學法指導】
1、結合問題導學自學書中 25-26 頁,用紅筆勾畫出疑惑點;獨立思考完成合作探究。
2、針對預習自學及合作探究找出的疑惑點,課上小組內討論交流,答疑解惑。
【學習目標】
1、探索并掌握圓錐的體積計算公式。
2、能利用公式計算圓錐的體積,解決簡單的實際問題。
3、培養樂于學習,勇于探索的情趣。
【重點、難點】
重點:掌握圓錐的體積計算公式。
難點:理解圓錐體積公式的推導過程。
【預習導學】
(一)輕松熱身。
1、寫出相關的公式: 圓的體積:s= 圓柱的體積公式:v=
2、一個圓柱形的底面直徑是 10 米,高 3.9 米,它的體積是多少? (二)自主學習。
1、圓錐體積公式的推導。
。1)借助教具完成書上 25-26 頁的實驗,探索圓錐和圓柱體積之間的關系。
。2)通過實驗,因為:圓柱的體積=( )( ),所以圓錐的體積=( )
2、圓錐體積公式的應用。
看書完成例 3
工地上有一些沙子,堆起來近似一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數。)
(1)沙堆底面積:
(2)沙堆的體積:
【合作交流】
1、討論自主學習中存在的問題。
2、思考討論:為什么等底等高的圓錐的體積只有圓柱的體積的 積多( )倍,圓錐的體積比圓柱的體積少( ) 。
3、一個圓錐形小麥堆,底面周長是 25.12m,高 3m.如果每立方米小麥重 750 千克,這堆小麥重多少千 克?
【課堂總結】本堂課你學懂了什么?還有什么疑問?
【當堂檢測】
1、一個圓錐的高是 10cm,底面半徑是 3cm,它的體積是多少?
2、把一個底面直徑為 20cm 的圓柱形木塊切削成一個與它等底等高的圓錐。這個圓錐的體積是多少?
3、一個正方體的體積是 225 立方厘米,一個圓錐的底面半徑和高都等于該正方體的棱長。求這個圓 錐的體積。
《圓錐的體積》教學案例 篇11
教學目標
1、通過練習學生進一步理解、掌握圓錐的特征及體積計算公式。
2、能正確運用公式計算圓錐的體積,并解決一些簡單的實際問題。
3、培養學生認真審題,仔細計算的習慣。
重點:進一步掌握圓錐的體積計算及應用
難點:圓錐體積公式的靈活運用
教學過程
一、知識回顧
1、前幾節課我們認識了哪兩個圖形?你能說說有關它們的知識嗎?
2、學生說,教師板書:
圓錐圓柱
特征1個底面2個
扇形側面展開長方形
體積V=1/3SHV=SH
二、提出本節課練習的內容和目標
三、課堂練習
。ㄒ唬⒒居柧
1、填空課本1----2(獨立完成后校對)
2、圓錐的體積計算
已知:底面積、直徑、周長與高求體積(小黑板出示)
(二)、綜合訓練:
1、判斷
。1)圓錐的體積等于圓柱的1/3
。2)長方體、正方體、圓柱和圓錐的體積公式都可用V=SH
。3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升
(4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米
2、應用:練習四第45題任選一題
3、發展題:獨立思考后校對
四課堂小結:說說本節課的收獲
《圓錐的體積》教學案例 篇12
教學目標:
1、知識與技能
理解圓錐體積公式的推導過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。
2、過程與方法
通過操作、實驗、觀察等方式,引導學生進行比較、分析、綜合、猜測,在感知的基礎上加以判斷、推理來獲取新知識。
3、情感態度與價值觀
滲透知識是“互相轉化”的辨證思想,養成善于猜測的習慣,在探索合作中感受教學與我的生活的密切聯系,讓學生感受探究成功的快樂。
教學重點:
掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。
教學難點:
理解圓錐體積公式的推導過程。
教具學具:
不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。
教學流程:
一、創設情境,提出問題
師:五一節放假期間,老師帶著自己的小外甥去商場購物,正巧商場在搞冰淇淋促銷活動。促銷的冰淇淋有三種(課件出示三個大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請同學們幫老師參考一下買哪一種合算?
生:我選擇底面的;
生:我選擇高是的;
生:我選擇介于二者之間的。
師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?
生:只要求出冰淇淋的體積就可以了。
師:冰淇淋是個什么形狀?(圓錐體)
生:你會求嗎?
師:通過這節課的學習,相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。
二、設疑激趣,探求新知
師:那么你能想辦法求出圓錐的體積嗎?
(學生猜想求圓錐體積的方法。)
生:我們可以利用求不規則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。
師:如果這樣,你覺得行嗎?
教師根據學生的回答做出最后的評價;
生:老師,我們前面學過把圓轉化成長方形來研究,我想圓錐是不是也可以這樣做呢?
師:大家猜一猜圓錐體可能會轉化成哪一種圖形,你的根據是什么?
小組中大家商量。
生:我們組認為可以將圓錐轉化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。
師:此種方法是否可行?
學生進行評價。
師:哪個小組還有更好的辦法?
生:我們組認為:圓錐體轉化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯系。如果將圓錐轉化成圓柱,就更容易進行研究。)
師:既然大家都認為圓錐與圓柱的聯系最為密切,請各組先拿出學具袋的圓錐與圓柱,觀察比較他們的底與高的大小關系。
1、各小組進行觀察討論。
2、各小組進行交流,教師做適當的板書。
通過學生的交流出現以下幾種情況:一是圓柱與圓錐等底不等高;二是圓柱與圓錐等高不等底;三是圓柱與圓錐不等底不等高;四是圓柱與圓錐等底等高。
3、師啟發談話:現在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關系的一組呢?(小組討論)
4、小組交流,在此環節著重讓學生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。
師:我們大家一致認為應該選擇等底等高的一組,那么我們就跟求圓柱體的體積一樣,就用“底面積×高”來表示圓錐體的體積行不行?為什么?
師:圓錐體的體積小,那你猜測一下這兩個形體的體積的大小有什么樣的關系?
生:大約是圓柱的一半。
生:……
師:到底誰的意見正確呢?
師:下面請同學們三人一組利用你桌子的學具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標明確,才能更好的合作。開始吧!
要求:
實驗材料,任選沙、米、水中的一種。
實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。
(生進行實驗操作、小組交流)
師:
誰來匯報一下,你們組是怎樣做實驗的?
通過做實驗,你們發現它們有什么關系?
生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。
生:我們利用空圓錐裝滿米到入空圓柱,三次倒滿。圓錐的體積是等底等高圓柱的體積的1/3。)
師:同學們得出這個結論非常重要,其他組也是這樣的嗎?生略
師:請看大屏幕,看數學小博士是怎樣做的?(課件演示)
齊讀結論:
師:你能根據剛才我們的實驗和課件演示的情況,也給圓錐的體積寫一個公式?
。ㄐ〗M討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則V圓錐=sh÷3即V圓錐=1/3sh
師:同學們剛才我們得到了圓錐的體積公式,(請看課件)你能求出三種冰淇淋的體積?
(噢!三種冰淇淋的體積原來一樣大)
聯系生活,拓展運用:
本練習共有三個層次:
1、基本練習
(1)判斷對錯,并說明理由。
圓柱的體積相當于圓錐體積的3倍。( )
一個圓柱木料,把它加工成的圓錐,削去的部分的體積和圓錐的體積比是( )
一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。( )
。2)計算下面圓錐的體積。(單位:厘米)
s=25.12 h=2.5
r=4, h=6
2、變形練習
出示學校沙堆:我班數學小組的同學利用課余時間測量了那堆沙子,
得到了以下信息:底面半徑:2米,底面直徑4米,底面周長12.56米,底面積:12.56平方米,高1.2米,
。1)、你能根據這些信息,用不同的方法計算出這堆沙子的體積嗎?
。2)、找一找這些計算方法有什么共同的特點? V錐=1/3Sh
。3)、準備把這堆沙填在一個長3米,寬1、5米的沙坑里,請同學們算一算能填多深?
3、拓展練習
一個近似圓錐形的煤堆,測得它的底面周長是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?
整理歸納,回顧體驗
。ㄍㄟ^小結展示學生個性,學生在學習中的自我體驗,使孩子情感態度,價值觀得到升華。)
《圓錐的體積》教學案例 篇13
一、 教學內容
九年義務教育六年制小學教科書《數學》(第一版)六年級第十二冊第二單元。
二、 教材分析
1、內容分析:這是本單元實驗探究性較強的知識點,通過學生合作探究,理解并掌握圓錐體積的計算方法,且能加以運用。
2、教學重點:正確運用公式計算圓錐的體積,學會解決與計算圓錐形物體有關的實際問題。
3、教學難點:理解圓錐體積公式的推導。
三、 教學目標
1、知識教學點:讓學生通過觀察、親自動手做對比實驗、分析、驗證等活動,初步感知圓錐的體積計算公式的由來,能理解并加以運用。
2、能力訓練點:培養學生的觀察、比較、分析、綜合、概括以及初步的自主探究的能力。
3、思想滲透點:激發學生積極探索新知和學習數學的欲望。
四、 教、學具準備
1、教具:量筒(2只)、圓柱和圓錐(等底等高,可裝水)、紅顏色的水、不規則的石塊。
2、學具:教師指導用硬塑料紙做3組可盛水的圓柱和圓錐(①等底等高 ②等底不等高 ③等高不等底)、適量的水。
五、 教學過程
(一) 創設探究情景,激趣引思
1、教師行為
(1) 談話:同學們探究了計算圓柱體積的方法。想不想探究圓錐體積的計算方法呢?今天我們用準備好的學具試一試!
(2) 演示實驗:先出示實驗器材,讓學生細心觀察比較;在空圓柱里裝滿紅顏色的水,然后倒入一只量筒里;在空圓錐里裝滿紅顏色的水,倒入另一只量筒里,像這樣倒三次。
。3) 質疑: 通過老師做實驗,同學們看到了什么?想到了什么?發現了什么?有什么感想?
2、學生活動
。1) 聽談話,明確主題。
。2) 細致入微地觀察演示實驗。
。3) 四人小組合作討論交流,看到的、想到的。并分組匯報討論結果。(兩只一樣的量筒里水面高度一樣,用空圓錐倒了三次水,空圓柱倒了一次,它們的底面大小及高度一樣,兩只量筒里水的體積相等、空圓錐裝三次的水與空圓柱裝一次的水一樣多等)。
(4) 親自用教師演示用具驗證討論結果。
(設計意圖:通過演示實驗激發學生的探究興趣,激活學生思維。)
(二) 提出探究假想,實踐驗證
1、教師行為
(。﹩⒌希豪蠋熥龅膶嶒瀸ξ覀兘裉斓奶骄炕顒佑惺裁磫l?請同學們提出自己的設想,并給予各組學生必要的指導,進行小組討論。
。2)綜述討論結果,提問:所有圓柱的體積都等于圓錐體積的3倍,圓錐體積都等于圓柱體積的1/3,是否正確,為什么?有什么條件限制?再讓學生觀察老師用的實驗器具思考。
(3)促思:同學們設想的條件哪一種正確?大家沒有量筒,用你們準備的
學具怎樣才能驗證假設?
。4)合作探究:創新驗證方案,怎樣讓它具有可操作性,教師適當點撥。
。5)組織學生用確定的方案進行合作探究,實踐驗證。
。6)誘導:修正假設,反思結果,得出結論,層層深入。
2、學生活動
。1)小組討論,積極交流,達成共識。
(2)分組匯報討論結果:對今天的學習有幫助,假設空圓柱和空圓錐里裝水的.體積近似等于它們的體積;則老師所用的空圓柱的體積將等于空圓錐體積的3倍,空圓錐的體積就等于空圓柱體積的1/3。
。3)根據問題設想條件:圓柱和圓錐、等底等高、等底不等高、等高不等底。
。4)交流確定驗證方案:分別用三組準備好的空圓錐裝滿水倒入空圓柱里,看哪一組裝3次剛好裝滿。
。5)分組實驗。
。6)匯報探究情況:等底等高的一組空圓柱和空圓錐才符合原先假設。
。7)小結:圓柱的體積等于和它等底等高的圓錐體積的3倍;圓錐體積等于和它等底等高的圓柱體積的1/3.即
V柱=1/3 V錐=1/3 sh=1/3 ∏r2h
(設計意圖:培養學生的分析能力和自主探究學習的能力。)
。ㄈ╈柟烫骄砍晒,深化理解
1、教師行為
(1) 鞏固新知:讓學生計算課本例1、例2、做一做,然后集體訂正。
。2) 強調:計算圓錐體積時,最容易出現的錯誤是什么?
(3) 引申練習:一個圓錐形零件,已知下列條件,分別求其體積
、俚酌姘霃3厘米,高15厘米;
、诘酌嬷睆5厘米,高10厘米;
、鄣酌嬷荛L12.56厘米,高10厘米;
④底面半徑3厘米,比高少70%。
2、學生活動
。1)自主訓練,多思多問。
。2)總結:計算時,不能忘記特殊數字“1/3”
。3)靈活運用公式,找出自己知識的不足。
(設計意圖:運用探究成果進行強化練習,加深對知識的理解,培養學生綜合運用能力。)
。ㄋ模 拓展探究思維,邁向生活
1、教師行為
質疑:
。1)出示一個不規則滑石塊,怎樣求其體積?(教師作指導)
。2)學校食堂買來一車煤炭,倒堆成圓錐體,量得其底面周長和高分別為12.56米,每立方米煤200元,結果付了1300元,問學校有沒有多花錢?
2、學生活動
。1)分組討論,引導得出求其體積的方法:把不規則的物體(不吸水)放進盛水的容器里,求出上升那部分水的體積也就等于不規則物體的體積。
。2)合作探討明確計算方法。
(設計意圖:解決生活中的實際問題,體現“人人學有價值的數學,不同的人在數學上得到不同的發展”的新課程理念,培養學生的創新意識和實踐能力。)
教學反思:
立足教材,根據本地區挖掘學生較熟悉的、樂于接受的、具有多方面教育價值,能引起學生思考的素材,真正實現用教材,并加以創新,讓探究成功率提高,激起了學生的學習興趣。在課堂教學中充分發揮學生的主體性,構建了“激趣引思——實踐驗證——深化理解——邁向生活”的教學模式,促進了學生學習方式的轉變。]
教學評析:
教師充分利用教學用具,開發數學課程資源,讓學生在探究新知的過程中,進一步發展空間觀念和應用數學的能力,實現了讓學生在生活中學數學、用數學的愿望。
在教學過程中與學生積極互動,共同發展,處理好傳授知識與培養能力的關系,注重培養學生的獨立性和自主性,引導學生觀察、質疑、探究,在實踐中學習,促進學生在教師指導下主動地、富有個性的學習,以學生為本,以問題為中心,以實驗探索為主要手段,以討論為交流方式,以陳述觀點及根據為要求,把學生推到了探究性學習的前臺,讓學生去想、去說、去做、去表達,去自我評價、去體會科學知識的真諦,促進學生全面發展。
《圓錐的體積》教學案例 篇14
一、說教材
圓錐是小學幾何初步知識的最后一個教學內容,是學生在學習了平面圖形和長方體、正方體、圓柱體的基礎上進行研究的含有曲面圍成的最基本的立體圖形。由研究長方體、正方體和圓柱體的體積擴展到研究圓錐的體積的。內容包括理解圓錐體積的計算公式和圓錐體積計算公式的具體運用。學生掌握這些內容,不僅有利于全面掌握長方體、正方體、圓柱和圓錐之間的本質聯系、提高幾何知識掌握水平,為學習初中幾何打下基礎,同時提高了運用所學的數學知識技能解決實際問題的能力。
教學目標是:
1、使學生理解圓錐體積的推導過程,初步掌握圓錐體積的計算公式,并能正確計算圓錐的體積。
2、通過動手推導圓錐體積計算公式的過程,培養學生初步的空間觀念和動手操作能力。
教學重點是:掌握圓錐體積的計算方法。
教學難點是:理解圓錐體積公式的推導過程。
二、說教法
根據學生認知活動的規律,學生實際水平狀況,以及教學內容的特點,我在本節課以自主探究、小組合作學習方式為主,采用情境教學法,先通過情境感知并進行猜想,再通過操作驗證,從中提取數學問題,自己總結歸納出圓錐體積的計算方法,從而使學生從形象思維逐步過渡到抽象思維,進而達到感知新知、驗證新知、應用新知、鞏固和深化新知的目的,同時在課堂上多鼓勵學生,尤其注重培養學生敢于質疑的精神。
三、說學法
本節課學習適于學生展開觀察、猜想、操作、比較、交流、討論、歸納等教學活動,為了更好的指導學法,我采用小組合作形式組織教學。這樣,一方面可以讓學生去發現,體驗創造獲取新知,另一方面,也可以增強學生的合作意識,在活動中迸發創造性的思維火花。
四、說教學流程
為了更好的突出重點,突破難點,我以動手操作、觀察猜想、實驗求證、討論歸納法實現教學目標;教學中充分利用幾何的直觀,發揮學生的主體作用,調動學生積極主動地參與教學的全過程。
1、創設情境,提出問題
出示近似圓錐形的沙堆,接著讓學生根據情境提出他們想知道的知識,很多學生都想知道沙堆的體積有多大,從而導出課題“圓錐的體積”。讓學生自己提出問題,發現問題,激發了學生探索解決問題的強烈愿望。
2、探索實驗,得出結論
a、動手操作
把一個圓柱形木料的上底削成一點,讓學生觀察削成的圓錐體與原來的圓柱體有什么關系.要求先標出上底的圓心點,不改孌下底面,注意安全。培養學生初步的空間觀念和動手操作能力。
b、觀察猜想
觀察、比較圓柱體與圓錐體。突破知識點(1)“等底等高”;
讓學生猜測圓柱體積與它等底等高的圓錐體積的關系,突破知識點(2)圓錐體積比與它等底等高的圓柱體積小、圓錐體積是與它等底等高的圓柱體積的1/2、圓錐體積是與它等底等高的圓柱體積的1/3;設想求圓錐體積的方法,學生獨立思考后交流討論,給學生提供了聯想和交流的空間,培養了他們的創新能力。
c、實驗求證
學生動手實驗,小組合作探究圓錐體積的計算方法,(1)用天平稱圓錐體和與它等底等高的圓柱體木料的質量;(2)把圓錐體浸裝有水的圓柱形水槽里量、算出體積;(3)用裝沙或裝水的方法進行實驗。這樣的設計,由教師操作演示變學生動手實驗,充分發揮了學生的主體作用。
通過學生演示、交流、討論,得出圓錐體積的計算公式:
圓柱的體積等于與它等底等高的圓錐體積的3倍;
圓錐體積等于與它等底等高的圓柱的體積的1/3.
圓錐體積=底面積 高 1/3
這個環節充分發揮了學生的主體作用,讓學生在設想、探索、實驗中發展動手操作能力及創新能力。
3、應用結論,解決問題
。1)以練習的形式出示例1。
例1:一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?
通過這道練習,鞏固了所學知識。
。2)基礎練習:求下面各圓錐的體積。
底面面積是7.8平方米,高是1.8米。
底面半徑是4厘米,高是21厘米。
底面直徑是6分米,高是6分米。
這道題是培養學生聯系舊知靈活計算的能力,形成系統的知識結構。
。3)出示例2。
在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是6米,高是1.2米,每立方米小麥約重735千克,這堆小麥大約有多少千克?
通過這道練習,培養學生解決實際問題的能力,了解數學與生活的緊密聯系。
(4)操作練習。
讓學生把實驗用的沙子堆成圓錐形沙堆,合作測量計算出它的體積,這道題就地取材,給了學生一個運用所學知識解決實際問題的機會,讓他們動手動腦,提高了學習數學的興趣。
4、全課總結,課外延伸。
讓學生說說這節課的收獲,并在課后從生活中找一個圓錐形物體,想辦法計算出它的體積。這樣激發了學生到生活中繼續探究數學問題的興趣。
《圓錐的體積》教學案例 篇15
教學內容:第25~26頁,例2、例3及練習四的第3~8題。
教學目的:
1、通過分小組倒水實驗,使學生自主探索出圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。
2、借助已有的生活和學習經驗,在小組活動過程中,培養學生的動手操作能力和自主探索能力。
3、通過小組活動,實驗操作,巧妙設置探索障礙,激發學生的自主探索意識,發展學生的空間觀念。
教學重點:掌握圓錐體積的計算公式。
教學難點:正確探索出圓錐體積和圓柱體積之間的關系。
教學準備:圓錐與等底等高的圓柱,圓錐與不等底等高的圓柱。
教學過程:
一、復習
1、圓錐有什么特征?(使學生進一步熟悉圓錐的特征:底面、側面、高和頂點)
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。
二、新課
1、教學圓錐體積的計算公式。
。1)回憶圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的.
(2)能不能也通過已學過的圖形來求呢?圓錐的體積可能和什么圖形的體積有關?圓錐的體積該怎樣求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
(3)拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發現“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
。4)先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?
。ń處熥寣W生注意,記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)
。5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的 )還可以怎么說?
板書:圓錐的體積=1/3×圓柱的體積=1/3×底面積×高,字母公式:V=1/3Sh
拿不等底等高的圓柱與圓錐進行實驗。為什么倒3次不能剛好倒,和剛才不一樣呢?
強調:“等底等高”。
問:Sh表示什么?為什么要乘1/3?
練習:一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
一個圓錐的體積是15立方厘米,與它等底等高的圓柱的體積是多少?
2、教學練習四第3題
(1)這道題已知什么?求什么?已知圓錐的底面積和高應該怎樣計算?
。2)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算,做完后集體訂正。
說明:不要漏乘1/3,計算時能約分的要先約分。
3、鞏固練習:完成練習四第4題。
4、教學例3.
。1)出示例3
已知近似于圓錐形的沙堆的底面直徑和高,求這堆沙堆的的體積。
。2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
。3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的'體積公式求出沙堆的體積)
(4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數的取舍方法是否正確)
三、鞏固練習
1、做練習四的第7題。
學生先獨立判斷這三句話是否正確,然后全般核對評講。
2、做練習四的第8題。
(1)引導學生學生思考回答以下問題:
、 這道題已知什么?求什么?
、 求圓錐的體積必須知道什么?
、 求出這堆煤的體積后,應該怎樣計算這堆煤的重量?
。2)讓學生做在練習本上,教師巡視,做完后集體訂正。
3、做練習四的第6題。
。1)指名學生先后回答下面問題:
、 圓柱的側面積等于多少?
、 圓柱的表面積的含義是什么?怎樣計算?
、 圓柱體積的計算公式是什么?
④ 圓錐的體積公式是什么?
。2)學生把計算結果填寫在教科書第28頁的表格中,做完后集體訂正。
四、總結
這節課學習了哪些內容?你是如何準確地記住圓錐的體積公式的?
第七課時教學反思
課件演示
俗話說“眼見為實”,所以相對于課件演示而言,教師在全班演示會更直觀,結論也更具信服性。
俗話又說“紙上得來終覺淺,絕知此事要躬行”,所以相對于看教師演示與自己親自動手實驗,親身經歷探究印象會更深刻。
課堂如果以4——6人小組為單位進行實驗,全班至少得有9套以上教具?晌倚,F有教具數量不夠。如果要求學生課前自制教具,他們暫時無法制作出與圓柱等底等高高的圓錐。所以只好改為教師演示,學生觀察。
僅用一次實驗就得出結論是不嚴謹的,所以課堂上必須讓學生歷經多次不同實驗后才能得到正確結論。根據學,F有教具,今天我準備了兩套不同大小的等底等高圓柱、圓錐作為器材。在實驗中,我不僅讓學生清晰地看到將圓錐內的水倒3次可以注滿與它等底等高的圓柱,同時,還讓他們看到圓柱內的水再反倒回等底等高的圓錐時要倒3次。不僅自己示范演示,也讓學生參與演示實驗。最后,我還用不等底等高的圓柱與圓錐做實驗,強調實驗結果只有在“等底等高”的條件下才能成立。因為實驗環節落實較好,全班作業正確率高。
《圓錐的體積》教學案例 篇16
指導思想與理論依據:
本節課的教學內容是圓錐體積公式的推導,是一節幾何課,新課程標準指出:教學的任務是引導和幫助學生主動去從事觀察、猜想、實驗、驗證、推理與交流等數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。因此,在設計本節課時,我力求為學生創造一個自主探索與合作交流的環境,使學生能夠從情境中發現數學問題,學生會產生探究問題的需要,然后再通過自己的探索去發現和歸納公式,體驗過程。
教學背景分析:
(一)教學內容分析:
1、教材內容:
本節教材是在學生已經掌握了圓柱體體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內容。讓學生學好這一部分內容,有利于進一步發展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。
2、研讀完教材后,自己的幾個問題:
。1)在教學的過程中如何將圓錐體積推導過程與圓柱構建起聯系,還不會使學生感到生硬?
。2)學生對三分之一好理解,怎樣去認識是等底等高的柱、錐。
。3)大家都知道本節課必少不了學生的操作,怎么操作才是有效操作?怎么操作才能滿足學生的求知欲?怎么操作才能使學生更好體驗這個過程?
(4)本節課的教學內容只能挖掘到圓錐的體積嗎?能不能再深入一些?
3、自己的創新認識:
首先,研讀教材后,我認為這幾個問題的根本是一致的都是要把握住“誰在學?怎么學?”首先,在設計本節課時我想不只是讓學生學會一個公式,而是學會一種數學學習的方式,一種數學學習的思想,體驗一種數學學習的過程。
其次,是要提供給同學們一個可操作的空間。
。ǘ⿲W情分析:
1、學生在前面的學習中對點、線、面、體有一定的基礎知識,同時也獲得了轉化、對應、比較等數學思想。尤其是對于高年級段的同學來講他們獲取知識的渠道十分豐富,自己又有一定探究能力,對于圓錐體積的知識相信是有一定認識的,在進行教學設計前我們應該了解到他們認識到哪兒了?了解學生的起點,為制定教學目標和選擇教學策略做好準備。
2、自己的認識:(結合自己在講課時發現的問題而談)
學生能夠根據以前的學習經驗圓柱和圓錐的底面都是圓形認識到二者之間存在一定聯系,而且又是剛學完圓柱學生認識到這一點看來并不難,難的是等底等高。因此,在教學設計過程中要注意柱、錐間聯系的設計,突破學生對“圓錐的體積是與它等底等高的圓柱體積的三分之一”中的“等底等高”。
。ㄈ┙虒W方式與教學手段分析:
根據本節課的教學內容及特點,在教學設計過程中我選擇了 “操作——實驗”的學習方式。學習任何知識的最佳途徑是由自已去發現,因為這種發現理解最深,也最容易掌握其中的內在規律、性質和聯系。”我認為這也正是我在設計這節課中所要體現的核心內容。第一次學習方式的指導:體現在出示生活情境后,先讓學生進行大膽猜測“買哪個蛋糕更劃算”。本次學習方式的指導是通過學生對生活問題進行猜想,使學生認識到其中所包含的數學問題,并由此引導學生再想一想你有什么解決方法。
。ㄋ模┘夹g準備與教學媒體:
在創設情境中利用多媒體出示主題圖,然后要從圖中剝離出圖形來,并演示整個實驗過程。
教學目標設計:
。ㄒ唬┙虒W目標:
1、使學生掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。
2、通過操作——實驗的學習方式,使學生體驗圓錐體積公式的推導過程,對實驗過程進行正確歸納得到圓錐的體積公式,能利用公式正確計算,并會解決簡單的實際問題。
3、培養學生的觀察、分析的綜合能力。
。ǘ┙虒W重點:理解圓錐體積的計算公式并能運用圓錐體積公式正確地計算圓錐的體積
。ㄈ┙虒W難點:通過實驗的方法,得到計算圓錐體積的公式。
教學過程與教學資源設計: