中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 小學數學教案 > 小學六年級數學教案 > 《圓錐的體積》導學預案(精選13篇)

《圓錐的體積》導學預案

發布時間:2022-12-30

《圓錐的體積》導學預案(精選13篇)

《圓錐的體積》導學預案 篇1

  教學目標:1、組織學生進行實驗,培養學生動手操作的能力,并推導出圓錐體積的計算公式。

  2、學生會運用圓錐的體積計算公式計算圓錐的體積。

  3、培養學生的觀察、比較、分析、綜合能力,發展學生的空間觀念。

  4、滲透轉化的數學思想。

  教學重點:圓錐體積公式的推導和應用。

  教學難點:圓錐體積公式的推導過程。

  教具準備:圓錐和圓柱、沙子、細繩、直尺。

  教學過程:

  一、復習導入:

  1、圓柱有哪些特征?怎樣計算圓柱的體積?

  2、計算下面圓柱的體積(口答算式):

  (1)底面積是15平方厘米,高是4厘米;

  (2)底面半徑是2分米,高是5分米;

  (3)底面直徑是6米,高是2米。

  3、圓錐有哪些特征?

  4、創設情境:天氣越來越暖和,商家舉行飲料促銷活動。盛飲料的杯子有圓柱和圓錐兩種形狀。演示讓學生明白圓柱和圓錐等底等高。在兩個杯子里分別裝滿飲料,一杯要4角錢,一杯要1元錢,如果打5折賣,分別賣多少錢?(2角、5角)你愿意買哪一杯?為什么?到底買哪一杯最劃算呢?那就要知道這個圓柱和圓錐體積之間到底存在什么樣的關系,帶著這個問題,今天我們來研究圓錐的體積。

  二、實驗操作,推導公式:

  1、什么是圓錐的體積?

  如果在圓柱或圓錐里面裝滿飲料或沙子,忽略厚度不計的話,飲料或沙子的體積就可以看作是圓柱或圓錐的體積。

  2、拿出自己做的等底等高的圓柱和圓錐來做實驗。

  (1)把圓柱里面裝滿沙子,然后往圓錐里面倒,把圓錐到滿,看可以到幾次才能倒完。或者把圓錐裝滿,再往圓柱里面倒,看幾次能把圓柱倒滿。

  (2)匯報實驗結果:在學生匯報時,教師要向學生明確,因為我們做的圓柱和圓錐尺寸上存在誤差,沙子顆粒之間也有間隙,也會有一定的誤差。所以實驗結果可能會因此不太準確。

  (3)課件演示:初步總結實驗結果

  (4)拿出不等底等高的圓柱和圓錐,小組合作再次實驗,強調“等底等高”這個條件。

  (5)得出結論:圓錐的體積是與它等底等高的圓柱體積的。

  3、練習;一個圓柱的體積是45立方分米,與它等底等高的圓錐的體積是多少立方分米?

  照應前面,現在讓你選擇,你會買哪一杯飲料?為什么?

  4、根據圓柱的體積公式,總結出圓錐的體積計算公式是v=1/3sh

  三、應用公式:

  1、出示例1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  讀題分析,學生獨立完成。

  2、練習

  (1)、一個圓錐的底面積是25平方分米,高是9分米。它的體積是多少立方分米?

  (2)、一個圓錐的底面半徑是4厘米,高是21厘米。它的體積是多少?

  (3)、一個圓錐的底面直徑是20厘米,高是9厘米。它的體積是多少?

  四、實踐應用:

  1、將自己盤子里的沙土做成一個近似的圓錐形,如果想知道這個圓錐形沙堆的體積,需要測量哪些數據?該怎樣測量呢?小組合作,利用老師給你準備的材料和工具,動手測量,討論總結測量方法

  2、匯報討論結果:

  五、全課總結:

《圓錐的體積》導學預案 篇2

  教學目標:

  1、通過動手操作參與實驗,發現等底等高的圓柱體和圓錐體之間的關系,從而得出圓錐體的體積公式。

  2、能運用公式解答有關的實際問題。

  3、滲透轉化、實驗、猜測、驗證等數學思想方法,培養動手能力和探索意識。

  教學重點:通過實驗的方法,得到計算圓錐體積的公式。

  教學難點:運用圓錐體積公式正確地計算體積。

  教學過程:

  一、創設情境,引發猜想

  在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學交流一下,再向全班同學匯報。

  小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了“圓錐的體積”后,就會弄明白這個問題。

  二、自主探索,操作實驗

  1、出示學習提綱

  (1) 利用手中的學具,動手操作,通過試驗,你發現圓柱的體積與圓錐體積之間有什么關系?

  (2) 你們小組是怎樣進行實驗的?

  (3) 你能根據實驗結果說出圓錐體的體積公式嗎?

  (4) 要求圓錐體積需要知道哪兩個條件?

  2、小組合作學習

  3、回報交流

  結論:圓錐的體積是等底等高的圓柱體積的1/3。

  公式:v=1/3sh

  4、問題解決

  小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?

  5、運用公式解決問題

  教學例題1和例題2

  三、鞏固練習 

  1、圓錐的底面積是5,高是3,體積是

  2、圓錐的底面積是10,高是9,體積是

  3、求下面各圓錐的體積.

  (1)底面面積是7.8平方米,高是1.8米.

  (2)底面半徑是4厘米,高是21厘米.

  (3)底面直徑是6分米,高是6分米.

  4、判斷對錯,并說明理由.

  (1)圓柱的體積相當于圓錐體積的3倍.( )

  (2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2 :1.( )

  (3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.( )

  四、拓展延伸

  一個圓錐的底面周長是314厘米,高是9厘米,它的體積是多少立方厘米?

  五、談談收獲

  六、作業

《圓錐的體積》導學預案 篇3

  圓柱的三分之一。 

  生 2 :三次倒滿,圓錐的體積是圓柱的三分之一。 

  生 3 (遲疑地):我們將空圓錐里裝滿沙子,然后倒入空圓柱中,四次正好裝滿。說明圓錐的體積是圓柱的四分之一。 

  生 1 :是三分之一,不是四分之一。 

  生 5 :我們在空圓錐里裝滿沙子,然后倒入空圓柱中,不到三次就將圓柱裝滿了。 

  …… 

  師:并不都是三分之一呀。怎么會是這樣!我來做。(教師從教具箱中隨手取出一個空圓錐一個空圓柱)你們看 , 將空圓錐里裝滿沙子,倒入空圓柱里。一次,再來一次。兩次正好裝滿。圓錐的體積是圓柱的二分之一。 

  學生議論紛紛。 

  生 6 :老師,你取的圓柱太大了。(教師在他的推薦下重新使用一個空圓柱繼續實驗,三次正好倒滿。)學生調換教具,再試。 

  師:什么情況下,圓錐的體積是圓柱的三分之一? 

  生:等底等高。 

  生:圓錐的體積等于和它等底等高的圓柱體積的三分之一

  案例反思】 

  《圓錐的體積》的教學多是先由教師演示等底等高情況下的三分之一,再讓學生驗證,最后教師通過對比實驗說明不等底等高的差異,而以上教學,將實驗的環節復合,在看似混亂無序的實踐中,增加了學生對實驗條件的辨別及信息的批判。學生學的主動,經歷了一番觀察、發現、合作、創新的過程,既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發展。而這些目標的達成完全是從正確對待“錯誤”開始的。 

《圓錐的體積》導學預案 篇4

  教學目標:

  1、讓學生掌握圓錐體積的計算方法,并能運用公式計算圓錐的體積,解決簡單的實際問題。

  2、通過動手操作實驗,使學生經歷圓錐體積公式的推導過程。

  3、在觀察與分析、操作與實驗的學習活動中培養學生主動探究問題和空間想象能力。

  教學重點、難點: 掌握圓錐體積公式。

  教具使用:  課件,等底等高長方形、三角形彩紙,等底等高圓錐、圓柱教具,水。

  教學過程:

  一、創設情境,問題導入

  1、師出示長方形、三角形紙各一張。

  提問:等底等高的長方形與三角形面積有什么關系?

  2、提問:旋轉長方形,三角形各得到什么圖形?

  長方形沿著長旋轉一周得到圓柱、直角三角形沿一條直角邊旋轉一周形成圓錐。

  3、觀察。旋轉后得到的圓柱和圓錐你有什么發現?(等底等高)

  4、猜想。旋轉后得到的圓錐的體積與圓柱的體積又有怎樣的關系?

  二、探究新知

  1、實驗

  師出示:等底等高的圓柱、圓錐學具、水。

  師:現在我們就要做一個實驗,看看圓柱和圓錐的體積有什么關系?

  生動手實驗:

  預設方案:①先灌滿圓錐,3次倒入圓柱

  ②先灌滿圓柱,3次倒入圓錐

  2、生演示匯報

  師板書:圓錐的體積  等于     圓柱體積的  

  質疑:

  追問:是否同意上面的結論。引導學生說出:和它等底等高補充板書。

  3、小結操作過程,課件演示。

  4、推導公式。讓生說圓錐的體積用字母如何來表示?

  v錐= sh= πr2h

  三、實際應用

  (1)、一個圓錐形的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

  生獨立完成,師巡視,生板書。

  強調:1912 是與圓錐等底等高圓柱的體積,再乘

  1912=73(立方厘米)

  (2)、在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.5米。每立方米小麥約重750千克,這堆小麥約有多少千克?

  生獨立完成,師巡視,生板書

  (4÷2)23.141.5=6.28(立方米)

  6.28750=4710(千克)

  3、填空

  ⑴一個圓錐的底面積是12平方厘米,高是6厘米,它的體積是(    )立方厘米。

  ⑵一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是(    )立方分米。

  ⑶一個圓錐比與它等底等高的圓柱體積少12立方厘米,圓柱體積是(    )立方厘米。

  4、判斷:

  ⑴圓柱一定比圓錐體的體積大。(    )

  ⑵圓錐的體積等于和它等底等高的圓柱體積的 。 (  )

  ⑶正方體、長方體、圓錐體的體積都等于底面積高。(   )                         

  ⑷等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。(    )

  四、拓展提高

  有一根底面直徑是6厘米,長是15厘米的圓柱體鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?

  法一:(v柱 -v錐)  (6÷2)23.1415- (6÷2)23.1415=282.6(立方厘米)

  法二:(  v柱)    (6÷2)23.1415=282.6(立方厘米)

  五、課堂小結:這節課你有哪些收獲?

  板書設計 

  圓錐的體積

  圓錐的體積  等于和它等底等高的圓柱體積的  

  v錐= sh= πr2h

  1912=73(立方厘米)

  (4÷2)23.141.5=6.28(立方米)

  6.28750=4710(千克)

《圓錐的體積》導學預案 篇5

  (一)創設情境,導入新課

  師:炎熱的夏天到了,小明想買一個冰淇淋吃,冰柜里各種形狀的冰淇淋可真多,而價錢一樣,買哪種劃算呢?這可把小明難住了。因為這里暗藏著一個數學問題,誰能幫助小明解決?(課件出示四種形狀的冰淇淋:圓柱、圓錐、長方體、正方體)。

  師:買哪一個劃算,這里暗藏的數學問題是什么?

  生:求出這四個冰淇淋的體積,買體積大的就劃算。

  師:如果給出相應的條件,你會求四個幾何體的體積嗎?

  (出示教具---板書3個公式  )

  生:圓錐的體積不會求。

  師:你們想學嗎?這節課我們一起研究圓錐體積的計算方法。(板書課題)

  師:在這節課上,你們希望學到哪些知識呢?

  (生自主回答,確立學習目標)

  師:好,我們一起努力吧!

  (二)自主探索,合作交流

  1、直觀引入  直覺猜想

  ①教師演示刨鉛筆:把一支圓柱形鉛筆的筆頭刨成圓錐形。

  ②引導學生觀察,并思考:你覺得圓錐的體積與相應的圓柱體積之間有聯系嗎?你認為有什么聯系?

  ③教師鼓勵學生大膽猜想。(板書:v柱=3v錐)  ?    猜測

  (三)探究新知:

  〈一〉實踐操作,揭示公式

  1:師:下面我們利用實驗的方法來探究圓錐體積的計算方法,以學習小組為單位,拿出準備好的實驗器材(圓柱,圓錐三組,細沙或大米),實驗時,把兩個容器比一比、量一量,看它們之間有什么關系,然后往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.通過實驗你發現了什么?填寫實驗報告單。(課件出示實驗報告單)

  實驗報告單

  組

  實驗器材

  實驗結果(次數)

  等底不等高的圓錐、圓柱

  等高不等底的圓錐、圓柱

  不等高也不等底的圓錐、圓柱

  等底等高的圓錐、圓柱

  2:學生分組實驗,教師巡視。

  3:學生匯報實驗結果:實物投影展示實驗報告單。

  4:引導學生發現:組際交流,得出結論:

  (小組代表把實驗過程展示)----說----實驗報告

  結論1:圓柱體的體積等于和它等底等高的圓錐體體積的3倍

  結論2:圓錐的體積等于和它等底等高圓柱體積的 1/3

  結論3:等底不等高的圓錐體與圓柱體,圓錐的體積不是圓柱體積的三分之一。

  結論4:等高不等底的圓錐體與圓柱體,圓錐的體積不是圓柱體積的三分之一。

  〈二>電腦演示  實驗驗證

  多媒體屏幕顯示:(課件)

  <三>啟發引導  推導公式

  1、實驗結果同樣表明:①等底等高 ----圓柱體積等于圓錐體積的3倍

  ②等底等高-----圓錐體積等于圓柱體積的

  2、通過學生動手操作和屏幕顯示,啟發學生思考:

  誰能聰明地概括出圓錐的體積計算公式?根據學生回答后板書:

  v錐=    sh

  3、師:這里sh表示什么?為什么要乘1/3?

  師:要求圓錐的體積必須知道什么條件?還要注意什么?

  <四〉運用公式,自學例題(課件)

  1. 出示題目。

  2. 學生讀題后,找已知條件和要求問題。

  3. 根據什么列式計算。

  4. 學生嘗試解答,指名板演。

  5. 集體訂正后總結解題方法。

  6. 看書質疑,并把課本例題補充完整。

  4、回到談話引入:要求圓錐形冰淇淋的體積,必須測量出哪些數據?并出示四個幾何體求體積的數據,幫助小明解決難題。

《圓錐的體積》導學預案 篇6

  教學內容:

  第25~26頁,例2、例3及練習四的第3~8題。

  教學目的:

  1、過分小組倒水實驗,使學生自主探索出圓錐體積和圓柱體積之間的關系,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,解決實際生活中有關圓錐體積計算的簡單問題。

  2、已有的生活和學習經驗,在小組活動過程中,培養學生的動手操作能力和自主探索能力。

  3、過小組活動,實驗操作,巧妙設置探索障礙,激發學生的自主探索意識,發展學生的空間觀念。

  教學重點:

  掌握圓錐體積的計算公式。

  教學難點:

  正確探索出圓錐體積和圓柱體積之間的關系

  教具準備:

  每生準備一組等底等高的圓柱和圓錐模具,大米,水,沙子等

  教學過程:

  一、復習

  1、圓錐有什么特征?(使學生進一步熟悉圓錐的特征:底面、側面、高和頂點)

  2、圓柱體積的計算公式是什么?

  指名學生回答,并板書公式:“圓柱的體積=底面積×高”。

  二、新課

  1、教學圓錐體積的計算公式。

  (1)回憶圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的.

  (2)圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)

  (3)拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發現“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”

  組織學生實驗分組合作學習

  (4)先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?

  (教師讓學生注意,記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)

  (5)這說明了什么?(這說明圓錐的體積是和它等底等高的圓柱的體積的 )

  學生敘述實驗過程并總結結論,得出計算公式

  板書:圓錐的體積= 1/3×圓柱的體積=1/3 ×底面積×高,

  字母公式:V= 1/3Sh

  2、教學練習四第3題

  (1)這道題已知什么?求什么?已知圓錐的底面積和高應該怎樣計算?

  (2)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算,做完后集體訂正。

  3、鞏固練習:完成練習四第4題。

  4、教學例3.

  (1)出示例3

  已知近似于圓錐形的沙堆的底面直徑和高,求這堆沙堆的的體積。

  (2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)

  (3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出沙堆的體積)

  (4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數的取舍方法是否正確)

  四、鞏固練習

  1、做練習四的第7題。

  學生先獨立判斷這三句話是否正確,然后全般核對評講。

  2、做練習四的第8題。

  (1)引導學生學生思考回答以下問題

  ① 這道題已知什么?求什么?

  ② 求圓錐的體積必須知道什么?

  ③ 求出這堆煤的體積后,應該怎樣計算這堆煤的重量?

  (2)讓學生做在練習本上,教師巡視,做完后集體訂正。

  3、做練習四的第6題。

  (1)指名學生先后回答下面問題

  ① 圓柱的側面積等于多少?

  ② 圓柱的表面積的含義是什么?怎樣計算?

  ③ 圓柱體積的計算公式是什么?

  ④ 圓錐的體積公式是什么?

  (2)學生把計算結果填寫在教科書第28頁的表格中,做完后集體訂正。

  五、課堂練習

  1、填空

  (1)圓錐體體積的計算公式( )

  (2)等底等高的圓錐體是圓柱體體積的( ),圓柱體是圓錐體體積的。

  (3)等底等高的圓錐體體積是3立方厘米,圓柱體的體積是。

  (4)體積和底面積相等的圓柱與圓錐,圓柱高5厘米,圓錐高。

  (5)體積和高相等的圓柱與圓錐,圓錐底面積15平方厘米,圓柱底面積是( )。

  (6)等底等高的圓柱和圓錐,圓柱比圓錐的體積大( )。

  2、判斷

  (1)圓柱體的體積一定比圓錐體的體積大 .

  (2)圓錐的體積等于和它等底等高的圓柱體的1/3.

  (3)圓錐體、正方體、長方體的體積都等于底面積×高。

  (4)圓錐的高是圓柱高的3倍,且底面積相等,那么他們的體積相等。

  3、補充習題

  (1)一堆煤成圓錐形,底面半徑是1.5米,高是1.1米。這堆煤的體積是多少?如果每立方米的煤重約1.4噸,這堆煤有多少噸?

  (2)一個圓錐形沙堆,底面直徑是28.26平方米,高是2.5米用這堆沙在10米寬的公路上鋪2厘米厚的路面,能鋪多少米?

  (3)一堆圓錐形的煤體積是12立方米,底面積是6平方米,高是多少?

  (4)在一個底面半徑是10cm的圓柱形水桶中裝有水,把一 個底面半徑為5cm的圓錐形鐵錘浸沒在水中,水面上升了1cm,試問鐵錘的高是多少?

  (5)等底等高的圓柱和圓錐,圓柱的體積比圓錐的體積多24立方分米,圓柱的體積是多少立方分米?

  六、總結

  這節課學習了哪些內容?你是如何準確地記住圓錐的體積公式的?

  教學反思

  從本節課的教學任務來看,主要是構建“圓錐的體積是等底等高的圓柱的體積的三分之一”這一概念的認識,而這一認識的形成,靠文字和觀摩演示都是蒼白無力的,它需要學生發自內心的需要,全身心的體驗,使學生在實驗中對自己的實驗過程和結論進行對比和反思,悟出等底等高的必要性,從而明確圓錐的體積是等底等高的圓柱的體積的三分之一”的具體含義。

《圓錐的體積》導學預案 篇7

  一、學習內容:

  教師提供 小學數學六年級下冊14頁----17頁。

  二、學生提供:

  等底等高的圓柱和圓錐教學用具各一個,小水盆,一些綠豆。

  三、學習目標:

  1、結合具體情景和實踐活動,了解圓錐的體積或容積的含義,進一步體會物體體積和容積的含義。

  2、經歷“類比猜想---驗證說明”的探索圓錐體積計算方法的過程,掌握圓錐體積的計算方法,能正確計算圓錐的體積,并解決一些簡單的實際問題。

  四、重點難點:

  重點:圓錐的體積計算。

  難點圓錐的體積公式推導。

  關鍵:圓錐的體積是與它等底等高的圓柱體積的三分之一。

  五、學習準備:

  等底等高的圓柱和圓錐教學用具各一個,一個三角形和一個長方形。

  看看你們能不能發現這兩個圖形之間隱藏的關系?你有什么發現?

  長方形的長等于三角形的底,長方形的寬等于三角形的高。

  你的發現真了不起。這種情況在數學中叫做“等底等高”。在“等底等高”的條件時,它們的面積又有什么樣的關系呢?

  三角形的面積等于長方形面積的一半或長方形面積是三角形面積的2倍。

  六、布置課前預習

  點撥自學

  1、圓柱和圓錐有哪些相同的地方?

  2、圓柱和圓錐有哪些不同的地方?

  3、圓錐的體積和圓柱的體積有什么關系呢?

  請小組開始討論。注意,這里的圓柱和圓錐指的就是圖上的圓柱和圓錐喲! 按照預習中學生存在的問題,教師加以點撥。

  七、交流解惑:

  它們的底面積相等,高也相等

  圓柱有無數條高,圓錐只有一條高。圓錐體積比圓柱小……

  動手做實驗:把圓錐裝滿綠豆,倒入圓柱中,看倒幾次能把圓柱裝滿。

  通過實驗操作,得出了正確的科學的結論:圓錐的體積等于和它等底等高的圓柱體積的三分之一。 組內交流

  組際解疑

  老師點撥

  八、合作考試

  1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?(口算)

  2、沈老師在大梅沙玩,將沙堆成一個圓錐形,底

  面半徑約3分米,高約2.7分米,求沙堆的體積。

  (只列式不計算)

  3、在打谷場上,有一個近似于圓錐的小麥堆,測

  底面直徑是4米,高是1.2米。每立方米小麥約

  重735千克,這堆小麥大約有多少千克?

  (只列式不計算)

  4、如圖,求這枝大筆的體積。

  (單位:厘米)

  (只列式不計算)

  5、將一個底面半徑是2分米,高是4分米的圓柱

  形木塊,削成一個的圓錐,那么削去的體積

  是多少立方分米?(口算)

  九、自我總結:

  通過今天的學習,我學會了 ,以后我會 在 方面更加努力的。

  十、教學反思:

  本節課通過交流、問答、猜想等形式,調動學生學習的積極性,激發學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣極高,在實驗過程中通過學生的親身體驗知識的探究的過程,加深學生對所學知識的理解,學生學習的積極性被調動起來了,學生學得輕松、愉快。充分讓學生體會到了等底等高的圓錐的體積是圓柱的三分之一。

《圓錐的體積》導學預案 篇8

  教學目標:

  1、掌握圓錐的體積公式,能運用公式進行計算。

  2、在觀察、實驗、討論等活動中探索圓錐的體積公式。

  3、體驗數學與生活的密切聯系,自覺養成合作交流與獨立思考的良好習慣。

  教學重點:

  1、使學生探索出圓錐的體積公式。

  2、初步掌握圓錐體積的計算方法并解決一些實際問題。

  教學難點:探索圓錐體積的計算方法和推導過程。

  教學過程:

  一、情境導入  

  1、課件出示圖片

  引導學生指圖說出冰淇淋形狀像我們學過的什么幾何體?圓錐

  2、導入:同學們,冰淇淋形狀像我們學過的圓錐體,你喜歡吃冰淇淋嗎?那么冰淇淋體積有多大呢?這節課我們就來研究這個問題.(板書:圓錐的體積)

  二、探究新知:

  (一)圓錐的體積公式探討 

  師:大家猜想,探求圓錐的體積,會和我們學習過的那種形體有關系?(圓柱)為什么?底面都是圓形

  師:我們的猜想是真的嗎?圓柱和圓錐的體積之間有沒有關系?有什么樣的關系?讓我們來做一個實驗來驗證一下吧!

  出示圓柱和圓錐圖片,演示等底等高

  師:今天用來試驗的教具有點特殊,他們的底相等,高也相等。

  教師引導提出要求:

  下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,用圓錐把圓柱裝滿需要幾次,看它們之間有什么關系,并想一想通過實驗你發現了什么?

  學生分組實驗

  每小組推舉一名學生匯報實驗結果: 

  當圓柱和圓錐的底面積相等,高相等時,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.(教師多媒體演示)

  所以我們的結論是:

  圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的.

  3、教師出示兩個大小懸殊的圓錐和圓柱,請同學猜測,圓錐的體積是否還是圓柱的三分之一?(進一步強調等底等高,教師演示)

  4、師生共同總結結論:圓錐的體積等于和它等底等高的圓柱體積的1/3。

  如果用用v表示圓錐的體積,s表示圓錐的底面積,h表示圓錐的高,圓錐的體積公式可以表示為:v= 1/3 sh

  (二)簡單應用  嘗試解答

  判斷:

  1、圓柱的體積是圓錐體積的3倍。( )

  2、圓柱的體積大于與它等底等高的圓錐的體積。(  )

  3、圓錐的高是圓柱的高的3倍,它們的體積一定相等。( )

  填空:

  1、一個圓柱的體積是75.36m³,與它等底等高的圓錐的體積是(  )m³。

  2、一個圓錐的體積是141.3cm³,與它等底等高的圓柱的體積是(  )cm³。

  例題:(出示課件)

  工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數。)

  (生獨立列式計算,小組交流,是指名組長出示答案)

  鞏固練習,運用拓展

  一、求下圖中圓錐體積。(略)

  二、 一堆煤成圓錐形,底面半徑是1.5m,高是1.1m。這堆煤的體積是多少?如果每立方米的煤約重1.4噸,這堆煤約有多少噸?(得數保留整數。)

  三、提高拓展

  有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。圓錐的體積是多少立方厘米?要削去鋼材多少立方厘米?

  總結:你學到了什么?

  板書設計:

  圓錐的體積

  等底等高    v錐=1/3v柱=1/3sh

  教學內容:

  本節教材是人教版六年級數學下冊第二單元“圓錐的體積”部分,課本第25-26頁。這部分內容是在學生已經認識圓錐的特征和會圓柱體積計算的基礎上學習的。學習過程中要引導學生探索并掌握圓錐的體積公式。然后能夠根據公式及變形公式進行計算。

《圓錐的體積》導學預案 篇9

  人教版六年級數學下冊《圓錐的體積》教學反思

  圓錐的體積是在學生直觀認識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎上安排教學的。以往幾次,都是按老方法進行,一開始教師就準備了一個圓柱和一個圓錐,先比較它們的底面積相等,再分別量出它們的高也相等。進而由老師做實驗,把圓錐裝滿水(或沙)往圓柱里倒,學生觀察倒了幾次正好把圓柱裝滿。接著推導圓錐的體積等于圓柱體積的三分之一,并重點強調求圓錐的體積一定要乘三分之一。一節課上下來非常輕松,非常順利,時間也充足,作業效果也還不錯。可是到了綜合運用問題就出來了:忘記乘三分之一的,計算出錯的,已知圓錐的體積和底面積,求高時,直接用體積除以底面積的,出的錯誤五花八門。

  再上這節課時,我加強了以下幾個點的教學,收到了較好的效果。

  1、教學新課時,我出示一個圓柱體和一個圓錐體讓學生觀察并猜測圓錐的體積和什么有關,學生聯系到了圓柱的體積,通過師生交流、問答、猜想等形式,調動學生的積極性,激發學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;

  2、實驗時,讓學生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。學生在學習的過程中,始終是一個探索者、研究者、發現者,并獲得了富有成效的學習體驗。學生獲得的不僅是新活的數學知識,同時也獲得了探究學習的科學方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學習中,學生會逐步變的有思想、會思考、會逐漸發現自身的價值。

  3、學生做圖形應用題時,引導學生審題,先確定是什么圖形,再想相應的計算公式,最后根據公式列出算式。這樣對于后面的綜合運用題,學生有了這種固定思維模式,就不會亂列式,

  4、列出算式后,不要按部就班的從左算到右,先觀察算式的特點,尋求簡單的計算方法,把口算和計算有機結合。如:3.14(4÷2)²8時,先口算(4÷2)²=4,再口算48=32,最后再計算3.1432。又如:3.14(4÷2)²9時,先口算9=3,(4÷2)²=4,34=12,再計算3.1412。這樣就大大地減少了學生計算難度,提高了計算的正確率。

  教后反思:

  上課一開始,有針對性地對圓錐體積公式進行復習,了解學生對已有知識的掌握程度,便于教師調控教學進度,為本節課的教學起到較好的鋪墊作用。學生在已有圓錐體積計算方法的基礎上,通過自主探究尋找解決問題的方法,學與思相結合,教師適時的點撥,引導學生解決問題時學會有序的思考,有利于學生邏輯思維能力的培養。通過對生活中的常見問題的解答,開闊了學生的視野,有利于學生的思維拓展,激活了學生的思維,培養學生運用數學的意識。在教學中,重視學生自主探究,尊重學生的意見,重視知識與生活的緊密聯系,通過獨立思考、小組合作等方式,把抽象的知識形象化,提高學生解決問題的能力。

  《圓錐的體積》教學反思

  通過本節課的教學,我意識到在平時的課堂教學中,我們要善于利用以學生認識發展規律為依托 :發現問題,提出問題探究解決問題,探究解決問題得出結論,實際應用使學生在“認識—實踐—再認識、再實踐”中理解運用知識。反思教學過程,主要有以下幾點體會:

  一、觀察引導

  讓學生觀察用卷筆刀削鉛筆,明白剛才那一截是圓柱體,現在這一截變成了圓錐體。啟發學生:削成后的這一部分體積與原體積比較有無變化?學生回答是肯定的,削后體積變小了。變小了以后的圓錐體是原圓柱體的幾分之幾?也就是說圓錐體體積與圓柱體體積有什么聯系?圓錐體體積公式如何推導?帶著問題去看書。

  二、巧置陷阱

  學生看書后知道圓錐體體積等于等底等高圓柱體積的三分之一。但對“等底、等高”這個條件往往不注意。為了突出“等底、等高”這個條件的重要性,我巧置陷阱,讓學生分組操作,(有一組的圓柱和圓錐體的容器不是等底等高的,有一組的圓柱和圓錐體的容器是等底等高的),去驗證課本上的知識。學生進行倒水實驗:用圓錐體容器盛滿水倒入圓柱體容器。過了一會兒,一個小組倒了3次水,還沒灌滿;而另一小組的同學卻大叫:“水溢出來了!”這是什么緣故呢?學生們議論紛紛。

  三、柳暗花明

  這時正是學生思維活動進入高潮時,我拿出等底等高的圓柱體和圓錐體兩個容器,用圓錐體量水三次正好灌滿圓柱體,引導學生與上次演示比較,1比3的關系是在什么基礎上建立的?學生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。而在這樣的過程中我放手讓學生去想、去做,鼓勵學生以多角度去思考問題。學生在學習的過程中,始終是一個探索者、研究者、發現者,并獲得了富有成效的學習體驗。

  四、歸納總結

  剛才同學們發現圓錐體體積等于等底、等高圓柱體體積的,現在圓錐體體積公式如何推導?學生很容易得出:

  v圓錐體=sh÷3

  但在教學過程中我發現了幾個值得我思考和改正的問題:

  1、在教學之后感覺到遺憾的是,由于教具有限,參與實驗的學生不多。

  2、有些學生在計算過程中常忘記除以3,需要加強練習。

  3、對學生的操作關注不夠到位。

  采取的措施:

  1、培養學生養成良好的學習習慣,做題時認真仔細。

  2、上課要用心去感受學生課堂上出現的各種情況,使自己更有激情,把自己更好地融入到課堂教學中去。同時也會把時間更多的放在鉆研教材上,把每一節課上得有聲有色。

  《圓錐的體積》教學反思

  《數學課程標準》指出:“有效的數學學習活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。”因此,在教學圓錐體積計算時,一改以前教師演示或在教師指令下實驗的做法;采取提供學生材料和機會,引導學生自主探究的學習方式。具體表現在:

  (1)密切數學與現實的聯系,富有兒童情趣。

  學生從熟悉的經典歷史故事《曹操稱象》中,理解了“大象”轉化為“石頭”的等量代換的數學方法,滲透轉化的方法,為新知識作好鋪墊和準備。又從刨鉛筆直觀引入,引發學生大膽猜想,學生的主動性,探究性得到培養。實驗中的米;最后,習題中又回歸生活,延伸了課堂。

  (2)致力于改變學生的學習方式。

  在教學過程中,能夠在學生已有的知識經驗基礎和動手操作上,經過學生自主探索與合作交流,解決了與生活經驗密切聯系,具有挑戰性的問題。課堂中,啟發學生提問,猜想,動手測量,注重了解決問題能力的培養,體驗到了成功的快樂。

  (3)學習過程中揭示了一般科學的研究方法。

  提出問題——直覺猜想——實驗探索——合作交流——實驗驗證——得出結論——實踐運用。這為以后的探究學習提供了一個基本方法,使學生在自主探索中掌握了知識,同時獲得了最廣泛的數學活動經驗、理想和方法,更發展了學生的反思意識、小組自我評價意識。

  縱觀本節課的設計,運用現代教學理論,以新課程的理念指導教學,較好的處理了主導和主體、知識和能力、過程和結論的關系,充分調動了學生的積極性,引導全體學生動腦、動手、動口參與學習的全過程。整節課教學目標明確,教學層次清楚。結構嚴謹,重點突出,取得了良好的教學效果。

《圓錐的體積》導學預案 篇10

  教學目標:

  1.在理解圓錐體積公式的基礎上,能運用公式解決有關實際問題,加深對知識的理 解。

  2.培養學生觀察、實踐能力。

  3.使學生在解決實際問題中感受數學與生活的密切聯系。

  教學重、難點:結合實際問題運用所學的知識

  教學理念:

  1.數學源于生活,高于生活。

  2.學生動手實踐,自主學習與合作交流相結合

  教學設計

  一 回顧舊知:

  1.圓錐的體積公式是什么? S、h各表示什么?

  2.求圓錐的體積需要知道什么條件?

  3.還知道哪些條件也能計算出圓錐的體積?怎樣計算?

  投影出示:

  (1)S = 10,h = 6 V = ?

  (2)r = 3,h = 10 V = ?

  (3)V = 9.42,h = 3 S = ?

  二 運用知識,解決實際問題

  1.(投影出示例2:一堆小麥圖)師:有這樣一堆小麥,你知道它的體積是多少嗎? 怎么辦呢?

  2.這些數據都是可以測量的。現在給你數據:高為1.2米,底面直徑為4米

  (1)麥堆的底面積:__________________

  (2)麥堆的體積:____________________

  3.知道了體積,這堆小麥大約有多少重能知道嗎?(每立方米小麥約735千克)(得 數保留整千克數)

  4.一個圓錐形沙堆,占地面積為3.14平方米,高1.5米。(1)沙堆的體積是多少平方 米?(2)如果每立方米沙約重1.6噸,這些沙子共重多少噸?(結果保留一位小數)

  5.用一根底面直徑2分米,高10分米的圓柱體木料,削成一個的圓錐,要削去多 少立方分米的木料?

  (1)(出示圖)什么情況下削出的圓錐是的?為什么?

  (2)削去的木料占原來木料的幾分之幾?

  (3)如果這是一塊長4分米,寬2分米,高1分米的長方體木料,又在什么情況下削出 的圓錐是的呢?

  三 綜合練習

  1.一個圓柱的底面積為81平方厘米,高12厘米,和它等體積等底的圓錐高為( )厘米;和它等體積等高的圓錐的底面積為( )厘米。

  2.將一個體積為16立方分米的圓錐形容器盛滿水,倒入一個底面積為10平方分米的 圓柱體容器中,水面的高度是( )分米

  3.一個圓柱和一個圓錐的體積相等,如果圓柱的高是圓錐的4/5,那么圓柱的底面積是 圓錐的幾分之幾?

《圓錐的體積》導學預案 篇11

  一、說教材

  圓錐是小學幾何初步知識的最后一個教學內容,是學生在學習了平面圖形和長方體、正方體、圓柱體的基礎上進行研究的含有曲面圍成的最基本的立體圖形。由研究長方體、正方體和圓柱體的體積擴展到研究圓錐的體積的。內容包括理解圓錐體積的計算公式和圓錐體積計算公式的具體運用。學生掌握這些內容,不僅有利于全面掌握長方體、正方體、圓柱和圓錐之間的本質聯系、提高幾何知識掌握水平,為學習初中幾何打下基礎,同時提高了運用所學的數學知識技能解決實際問題的能力。

  教學目標是:

  1、使學生理解圓錐體積的推導過程,初步掌握圓錐體積的計算公式,并能正確計算圓錐的體積。

  2、通過動手推導圓錐體積計算公式的過程,培養學生初步的空間觀念和動手操作能力。

  教學重點是:掌握圓錐體積的計算方法。

  教學難點是:理解圓錐體積公式的推導過程。

  二、說教法

  根據學生認知活動的規律,學生實際水平狀況,以及教學內容的特點,我在本節課以自主探究、小組合作學習方式為主,采用情境教學法,先通過情境感知并進行猜想,再通過操作驗證,從中提取數學問題,自己總結歸納出圓錐體積的計算方法,從而使學生從形象思維逐步過渡到抽象思維,進而達到感知新知、驗證新知、應用新知、鞏固和深化新知的目的,同時在課堂上多鼓勵學生,尤其注重培養學生敢于質疑的精神。

  三、說學法

  本節課學習適于學生展開觀察、猜想、操作、比較、交流、討論、歸納等教學活動,為了更好的指導學法,我采用小組合作形式組織教學。這樣,一方面可以讓學生去發現,體驗創造獲取新知,另一方面,也可以增強學生的合作意識,在活動中迸發創造性的思維火花。

  四、說教學流程

  為了更好的突出重點,突破難點,我以動手操作、觀察猜想、實驗求證、討論歸納法實現教學目標;教學中充分利用幾何的直觀,發揮學生的主體作用,調動學生積極主動地參與教學的全過程。

  1、創設情境,提出問題

  出示近似圓錐形的沙堆,接著讓學生根據情境提出他們想知道的知識,很多學生都想知道沙堆的體積有多大,從而導出課題“圓錐的體積”。讓學生自己提出問題,發現問題,激發了學生探索解決問題的強烈愿望。

  2、探索實驗,得出結論

  a、動手操作

  把一個圓柱形木料的上底削成一點,讓學生觀察削成的圓錐體與原來的圓柱體有什么關系.要求先標出上底的圓心點,不改孌下底面,注意安全。培養學生初步的空間觀念和動手操作能力。

  b、觀察猜想

  觀察、比較圓柱體與圓錐體。突破知識點(1)“等底等高”;

  讓學生猜測圓柱體積與它等底等高的圓錐體積的關系,突破知識點(2)圓錐體積比與它等底等高的圓柱體積小、圓錐體積是與它等底等高的圓柱體積的1/2、圓錐體積是與它等底等高的圓柱體積的1/3;設想求圓錐體積的方法,學生獨立思考后交流討論,給學生提供了聯想和交流的空間,培養了他們的創新能力。

  c、實驗求證

  學生動手實驗,小組合作探究圓錐體積的計算方法,(1)用天平稱圓錐體和與它等底等高的圓柱體木料的質量;(2)把圓錐體浸裝有水的圓柱形水槽里量、算出體積;(3)用裝沙或裝水的方法進行實驗。這樣的設計,由教師操作演示變學生動手實驗,充分發揮了學生的主體作用。

  通過學生演示、交流、討論,得出圓錐體積的計算公式:

  圓柱的體積等于與它等底等高的圓錐體積的3倍;

  圓錐體積等于與它等底等高的圓柱的體積的1/3.

  圓錐體積=底面積 高 1/3

  這個環節充分發揮了學生的主體作用,讓學生在設想、探索、實驗中發展動手操作能力及創新能力。

  3、應用結論,解決問題

  (1)以練習的形式出示例1。

  例1:一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?

  通過這道練習,鞏固了所學知識。

  (2)基礎練習:求下面各圓錐的體積。

  底面面積是7.8平方米,高是1.8米。

  底面半徑是4厘米,高是21厘米。

  底面直徑是6分米,高是6分米。

  這道題是培養學生聯系舊知靈活計算的能力,形成系統的知識結構。

  (3)出示例2。

  在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是6米,高是1.2米,每立方米小麥約重735千克,這堆小麥大約有多少千克?

  通過這道練習,培養學生解決實際問題的能力,了解數學與生活的緊密聯系。

  (4)操作練習。

  讓學生把實驗用的沙子堆成圓錐形沙堆,合作測量計算出它的體積,這道題就地取材,給了學生一個運用所學知識解決實際問題的機會,讓他們動手動腦,提高了學習數學的興趣。

  4、全課總結,課外延伸。

  讓學生說說這節課的收獲,并在課后從生活中找一個圓錐形物體,想辦法計算出它的體積。這樣激發了學生到生活中繼續探究數學問題的興趣。

《圓錐的體積》導學預案 篇12

  思考一:學生預習后教師怎么教

  預習后,學生已經知道圓錐的體積公式,有了這個公式,教師如果什么都不講,學生或許也能照著公式去解決問題。只是學生對公式是怎樣推導來的,為什么要乘1/3,不一定理解。出于這樣的學情,我把教材的思路變為:是什么——為什么——有什么用,這樣三個流程。首先說說圓錐的體積公式是什么?然后用實驗來驗證它是怎樣推導來的?最后用這個公式解決哪些問題?

  思考二:怎樣發揮小組合作的價值

  合作學習的價值可以體現于同伴間的優劣互助,體現于分工合作帶來的高效,也體現于智慧的相互碰撞。本節課的實驗研究,需要向學生提出要求:1號拿圓錐,2號倒水,3號觀察圓柱,4號記錄實驗單。在這樣的分工下,學生可以比較順利的完成實驗。

  思考三:如何有效發揮教師的主導作用,讓操作活動更加具有價值。

  教師的活動設計決定了教學效果。教師設計活動時要讓學生真正“經歷”了知識形成的過程,而不是僅僅停留在簡單的的模仿操作,充當操作工的角色。本節課的難點之一就是讓學生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件。為了有效突破這個難點,教師可以先讓學生自主用高和底不同情況的圓柱和圓錐進行操作活動,在匯報交流中可能會出現不同的結論(如果沒有教師可以唱反調,示范一次,引導學生深度思考),學生此時引發爭論。通過讓學生反思不同的操作結果,讓學生發現問題、提出問題、分析問題、解決問題,使學生不僅“經歷”了知識形成的過程,獲得新知,同時學生的探索精神和實踐能力得到了充分發展

  思考四:如何把學生的思維引向深處

  數學是思維的體操,學生思維的寬度和深度,需要教師去培養,去訓練。本節課上的“等底等高的圓錐體積是圓柱體積的1/3”,看似簡單的一個結論,其實其中隱藏著很多學問,由此可以聯想到下面的結論:等底等高的圓柱體積是圓錐體積的3倍,把圓柱削成圓錐,削去部分的體積是圓柱體積的2/3,是圓錐體積的2倍。圓錐體積比與它等底等高的圓柱體積少。圓柱和圓錐等積等底時,圓錐的高是圓柱的3倍。這么多知識點,需要教師在課前精心準備和預設,教師只有有意識地去引導,去啟發,學生的思維才會走向深處。

  思考五:學生在做本節課的練習時,往往容易發生兩個方面的錯誤

  一是在計算圓錐的體積時,漏乘1

  /

  3,;二是錯誤的判斷“圓錐的體積是圓柱的1

  /

  3”。為什么學生經歷了“類比猜想—驗證說明”的過程,理解了圓錐體積的計算方法,在做題時還是犯錯。這僅僅歸結于學生身上嗎?我想在教研課,或者是同課異構,或者是小型課題的研究時,教師需要進行深入的探索和研究。

《圓錐的體積》導學預案 篇13

  以前教學《圓錐的體積》時多是先由教師演示等底等高情況下的三分之一,再讓學生驗證,最后教師通過對比實驗說明不等底等高的差異,但效果不太好,學生對等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設計了以上的教學片斷:讓學生自選空圓柱和圓錐研究圓柱和圓錐體積之間的關系,學生通過動手操作得出的結論與書上的結論有很大的差異,有三分之一、四分之一、二分之一,思維出現激烈的碰撞,這時我沒有評判結果,而是讓學生經歷一番觀察、發現、合作、創新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學生裝在看似混亂無序的實踐中,增加對實驗條件的辨別及信息的批判。既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發展。而這些目標的達成完全是靈活機智地利用“錯誤”這一資源,所產生的效果。

  在平時的課堂教學中,我們要善于利用“錯誤”這一資源,讓學生思考問題幾經碰壁終于找到解決問題的方法,把思考問題的實際過程展現給學生看,讓學生經過思維的碰撞,這樣做實際上是非常富于啟發性的.學習數學不僅要學會這道題的解法,而且更要學會這個解法是如何找到的。

  教學不僅僅是告訴,更需要經歷。真正關注學生學習的過程,就要有效利用錯誤這一資源,教師要勇于樂于向學生提供充分研究的機會,幫助他們真正理解和掌握數學思想和方法,獲得廣泛的數學活動經驗,這樣,我們的課堂才是學生成長和成功的場所。

《圓錐的體積》導學預案(精選13篇) 相關內容:
  • 圓錐的體積應用的說課稿范文(通用2篇)

    一、說教材1、教材分析《圓錐的體積》教學是在學生學習了立體圖形——長方體、正方體、圓柱體的基礎上,認識了圓柱和圓錐的特征,會計算圓柱的表面積、體積的基礎上進行教學的。...

  • 《圓錐的體積》導學案設計(精選12篇)

    課題圓錐的體積科目數學課型新授課年級六年級下冊單元二課時第課時學習目標1.知道圓錐體積公式的推導過程。2.理解并掌握圓錐體積公式,能運用公式解決簡單的實際問題。3.養成樂于學習,勇于探索的情趣。...

  • 《圓錐的體積》教案(通用12篇)

    目標定位:a教學1. 使學生理解、掌握圓錐體積計算公式,能運用公式計算圓錐的體積,解決有關的實際問題。2. 培養學生觀察、操作、推理的能力。...

  • 引導學生主動參與學習初探——《圓錐的體積》教學案例分析(通用17篇)

    現代教育理念強調以學生為中心,學習是獲取知識的過程,強調知識不是通過教師傳授得到的,而是學習者在一定情景下,借助其他人的幫助,即通過相互協作,討論等活動而實現的過程。...

  • 圓錐的體積教學案例與反思(通用2篇)

    教學目標1、能用實驗的方法推導出圓錐體積的計算公式,并會用此公式計算出簡單的圓錐的體積。2、培養學生空間觀念和邏輯思維能力及實驗操作能力。3、培養學生合作交流的能力及互相協作的意識。教學重點:用實驗法推倒出圓錐的體積公式。...

  • 《圓錐的體積》導學案(通用17篇)

    東仁堡小學“2+2”高效課堂數學導學案(b版) 年級:六年級 編號: 04 課題:《圓錐的體積》 課時:第一課時 【預習導學】 (時段: 家庭學習 時間:20分鐘 ) 1、復習圓錐的特點及圓錐的高。...

  • “圓錐的體積”教學設計(通用13篇)

    教學內容:九年義務教育六年制小學數學第十二冊第48-50頁。教學目的:1.使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積。2.培養學生初步的空間觀念、邏輯思維能力、動手操作能力。...

  • 圓錐的體積教學設計(精選13篇)

    一、教學目標1、知識與技能理解圓錐體積公式的推導過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。2、過程與方法通過操作、實驗、觀察等方式,引導學生進行比較、分析、綜合、猜測,在感知的基礎上加以判斷、推理...

  • 圓錐的體積教學設計(通用16篇)

    教學內容:小學數學人教版第12冊42頁—43頁教學目標:1.通過動手操作實驗,推導出圓錐體體積的計算方法,并能運用公式計算圓錐體的體積。2.通過學生動腦、動手,培養學生的思維能力和空間想象能力。...

  • 《圓錐的體積》教學案例(通用16篇)

    教學內容:本課是九年義務教育人教版小學數學第十二冊的內容,是在學習了圓柱的體積計算和圓錐的特征的基礎上進行教學的。教學目標:1、引導學生通過實驗推導出圓錐體積計算公式,并能運用公式計算圓錐的體積,解決有關的實際問題。...

  • 六年數學下冊《圓錐的體積》教材分析北師大版(通用14篇)

    思考一:學生預習后教師怎么教預習后,學生已經知道圓錐的體積公式,有了這個公式,教師如果什么都不講,學生或許也能照著公式去解決問題。只是學生對公式是怎樣推導來的,為什么要乘1/3,不一定理解。...

  • 六年級下冊《圓錐的體積》學案分析人教版(通用13篇)

    【教材分析】 本節課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學...

  • 圓錐的體積練習(精選4篇)

    主備課人鐘鳳單位西盤小學教學內容圓錐的體積單元節次第一單元第8課時教學目標:1、進一步掌握圓柱和圓錐體積的計算方法,能正確熟練地運用公式計算圓錐的體積。2、進一步培養學生運用所學知識解決實際問題的能力和動手操作的能力。...

  • 《圓錐的體積》教學反思(通用9篇)

    以下是初中數學《圓錐的體積》教學反思,希望可以幫助大家!圓錐的體積教學反思一:圓錐的體積是學生在掌握了圓錐的認識和圓柱的體積的基礎上教學的。是小學幾何初步知識教學的重要內容。...

  • 引導學生主動參與學習初探——《圓錐的體積》教學案例分析(通用17篇)

    現代教育理念強調以學生為中心,學習是獲取知識的過程,強調知識不是通過教師傳授得到的,而是學習者在一定情景下,借助其他人的幫助,即通過相互協作,討論等活動而實現的過程。...

  • 小學六年級數學教案
主站蜘蛛池模板: 国产午夜福利在线观看视频 | 岛国一级片| 国产性xxxx18免费观看视频 | 免费色视频在线观看 | 狠狠色丁香婷婷 | 久久麻豆精品 | 97视频成人 | 14表妺好紧没带套在线播放 | 真人做爰片免费毛片中文 | 伊人444 | 国产成人久久精品麻豆二区 | 亚洲AV永久无码天堂网毛片 | av在线网页 | 欧美日韩第一页 | 4455成人免费观看 | 91婷婷色 | 啊灬啊灬啊灬快灬深高潮了 | 日本中文高清 | 扒开双腿疯狂进出爽爽爽水视频 | 久久精品免费国产大片 | 岛国毛片基地 | 中文字幕+乱码+中文乱 | 国产日韩欧美一区二区三区乱码 | 97大神超碰在线中文字幕 | 大柠檬导航香蕉导航巨人导航 | 国产一区二区波多野结衣 | 国产ktv交换配乱婬视频 | 天堂久久一区二区 | 免费观看一级成人毛片 | 97精品国产 | 中文字幕成人网 | 中文字幕av一区二区三区免费看 | 国产精品无码AV一区二区三区 | 国产欧美久久久久久久久 | 日本精品无码一区二区三区久久久 | 精品videossexfreeohdbbw | 天堂在线最新版资源www中文 | av福利在线 | 国产黑丝美女av | 超爱碰在线资源 | 久久精品亚洲一区二区三区画质 |