8.2 消元(4)
8.2 消元(4)
教學目標 1、熟練掌握加減消元法;
2、能根據方程組的特點選擇合適的方法解方程組,
3、通過分析實際問題中的數量關系,建立方程解決問題,進一步認識方程模型的重要性.
教學難點 教材中例4的數量關系較復雜,是本課的難點。
知識重點 能根據方程組的特點選擇合適的方法解方程組。
教學過程(師生活動) 設計理念
創設情境 1、 復2、 習提問
解二元一次方程組有哪幾種方法?它們的實質是什么?
2、播放動畫《西游記》場景,配數學詩.
悟空順風探妖蹤,千里只行四分鐘.
歸時四分行六百,風速多少才稱雄?
請一名學生解釋詩歌大意:孫悟空順風去查妖精的行蹤,僅用4分鐘就飛躍千里.逆風返回時4分鐘走了600里,問風速是多少?
學生思考,根據題中等量關系,列出方程.
設悟空行走速度為x里/分,風速為y里/分,則
你會解這個方程組嗎? 引例生動活波,激發學生的探究欲望,讓學生在看、聽、想的過程中愉悅地獲得數學知識.
探究新知 學生獨立完成后.在班級里交流解法.
解法一:①+②,消去y,得8x=1600
∴ x=200,代人①,得y=50
原方程組的解為
解法二:①-②,消去x。以下略.
解法三:整體代入.由①得:4x=1000-4y,代入②,消去x.
同理,也可消去y.
解法四:化簡原方程組為 ,再利用加減消元,或代入消元均可.
反思:試著從各個角度比較“代入法”與“加減法”的共同點與不同點.(同學間相互交流)它們各適用于什么情況?
在學生回答的基礎上,教師指出:當方程組中某一個未知數的系數絕對值是1或一個方程的常數項為零時,用代入法較方便;當兩個方程中,同一個未知數的系數絕對值相等或成整倍數時,用加減法較方便.
練習1:根據方程組的特點選擇更適合它的解法.你會怎樣解呢?(第1,2小題完成后再出示第3小題.)
(1) (2)
(3)
第1小題用代入法,第2小題用加減法,都很明確,第3小題有爭議.全班分成兩部分.1、2大組用代入法做,3、4大組用加減法做.比較兩解法的簡便程度.
反思:當方程組中任一個未知數的系數絕對值不是1,且不成倍數關系時,一般經過變形利用加減法會使解法更簡單. 嘗試不同的解法,培養學生的發散性思維和擇優意識。
解二元一次方程組不管采用哪種方法,都可以獲得它的解,但根據題目形式的特點,選擇不同的方法可以減少彎路,加快速度使解題過程簡潔提高正確率.
實際應用 教材第109頁例4.
2臺大收割機和5臺小收割機工作2小時收割小麥
3.6公頃,3臺大收割機和2臺小收割機工作5小時收割小麥8公頃,問:1臺大收割機和1臺小收割機1小時各收割小麥多少公頃?
分析:
問題1.列二元一次方程組解應用題的關鍵是什么?
(找出兩個等量關系)