“公因數(shù)和最大公因數(shù)”教學(xué)反思(精選2篇)
“公因數(shù)和最大公因數(shù)”教學(xué)反思 篇1
分析基礎(chǔ)知識(shí):本單元是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會(huì)找一個(gè)數(shù)的倍數(shù)和因數(shù),知道一個(gè)數(shù)的倍數(shù)和因數(shù)的特點(diǎn)的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識(shí)的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計(jì)算的基礎(chǔ)。教材分兩段安排教學(xué)內(nèi)容:第一段,認(rèn)識(shí)公倍數(shù)、最小公倍數(shù),探索找兩個(gè)數(shù)的最小公倍數(shù)的方法;第二段,認(rèn)識(shí)公因數(shù)、最大公因數(shù),探索找兩個(gè)數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實(shí)踐與綜合應(yīng)用《數(shù)字與信息》。
一、借助操作活動(dòng),經(jīng)歷概念的形成過程。
以往教學(xué)公因數(shù)的概念,通常是直接找出兩個(gè)自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個(gè)數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的操作活動(dòng),讓學(xué)生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過程。這樣安排有兩點(diǎn)好處:一是學(xué)生通過操作活動(dòng),能體會(huì)公倍數(shù)和公因數(shù)的實(shí)際背景,加深對(duì)抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在這節(jié)課上,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用邊長(zhǎng)6厘米的正方形正好鋪滿長(zhǎng)18厘米,寬12厘米的長(zhǎng)方形。在發(fā)現(xiàn)結(jié)果的同時(shí),還引導(dǎo)學(xué)生聯(lián)系除法算式進(jìn)行思考,對(duì)直觀操作活動(dòng)的初步抽象。再把初步發(fā)現(xiàn)的結(jié)論進(jìn)行類推,發(fā)現(xiàn)用邊長(zhǎng)1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長(zhǎng)18厘米,寬12厘米的長(zhǎng)方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、3、6這些數(shù)和18、12有什么關(guān)系。這時(shí)揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合圖顯示公因數(shù)的意義。實(shí)實(shí)在在讓學(xué)生經(jīng)歷了概念的形成過程,效果較好。
二、預(yù)設(shè)探究過程,增強(qiáng)學(xué)生主體意識(shí)。
例3中,教師宣布游戲規(guī)則后,放手讓學(xué)生動(dòng)手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學(xué)生探究廣闊的平臺(tái),教師拋出問題后,讓學(xué)生獨(dú)立探究。為了解決問題,學(xué)生充分調(diào)動(dòng)了已有知識(shí)經(jīng)驗(yàn)、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個(gè)過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動(dòng)探索知識(shí)的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識(shí),也充分體現(xiàn)了教師駕馭教材,調(diào)控學(xué)生的能力。
三、重視方法和策略的滲透,提高學(xué)生學(xué)習(xí)能力。
課程標(biāo)準(zhǔn)只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個(gè)自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個(gè)自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學(xué)用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個(gè)原因:一是通過列舉出兩個(gè)數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對(duì)公倍數(shù)和公因數(shù)意義的理解;二是學(xué)生對(duì)用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。所以在教學(xué)找公倍數(shù)或公因數(shù)時(shí),應(yīng)提倡思考方法多樣化。例4教學(xué)中,學(xué)生得出了三種方法來(lái)尋找12和18的公因數(shù)和最大公因數(shù)。(當(dāng)然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個(gè)方法優(yōu)化的過程,哪一種方法會(huì)更簡(jiǎn)單?通過對(duì)比,大多數(shù)學(xué)生贊同方法二。通過討論,引導(dǎo)學(xué)生以后解決此類問題時(shí)可以多運(yùn)用較好的方法二。在這中間教師注意到了引導(dǎo)、小結(jié)、鼓勵(lì),師生共同得出結(jié)論。
復(fù)習(xí)題中回顧了四年級(jí)知識(shí)基礎(chǔ)、列舉法和標(biāo)記法,在例3中,學(xué)生思考“還有哪些邊長(zhǎng)整厘米的正方形紙片也能正好鋪滿這個(gè)長(zhǎng)方形?”時(shí)就有了基礎(chǔ)。例4中,學(xué)生也知道用列舉法和標(biāo)記法來(lái)解決問題。
特別是用集合圖來(lái)表示因數(shù)和公因數(shù)的教學(xué)值得一提。有趣的游戲,預(yù)料中的爭(zhēng)執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學(xué)生如何填更有效,也更不易遺忘。練習(xí)五,第一題在填完集合圖后對(duì)公有因數(shù)和獨(dú)有因數(shù)意義的的提升,為下面的學(xué)習(xí)作了伏筆。體會(huì)初步的集合思想。
練一練,并沒有局限于畫畫△、○,找找公因數(shù)和最大公因數(shù),而是進(jìn)一步指導(dǎo)學(xué)生觀察,發(fā)現(xiàn)公因數(shù)都比小的數(shù)小(18和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。
所以請(qǐng)老師們?cè)谄綍r(shí)的教學(xué)中也去分析、思考,把握例題和練習(xí)中每個(gè)需要提升之處,在課堂中時(shí)時(shí)注意方法和策略的滲透,較好地用實(shí)這套教材。
“公因數(shù)和最大公因數(shù)”教學(xué)反思 篇2
《標(biāo)準(zhǔn)》指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。”這一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個(gè)方面。一是要引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識(shí)體驗(yàn)之間的關(guān)聯(lián);二是要提供把學(xué)生置于問題情景之中的機(jī)會(huì);三是要營(yíng)造一個(gè)激勵(lì)探索和理解的氣氛,為學(xué)生提供有啟發(fā)性的討論模式;四是要鼓勵(lì)學(xué)生表達(dá),并且在加深理解的基礎(chǔ)上,對(duì)不同的答案開展討論;五是要引導(dǎo)學(xué)生分享彼此的思想和結(jié)果,并重新審視自己的想法。
對(duì)照《課標(biāo)》的理念,我對(duì)《公因數(shù)與最大公因數(shù)》的教學(xué)作了一點(diǎn)嘗試。
一、引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識(shí)體驗(yàn)之間的關(guān)聯(lián)。
《公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學(xué)習(xí)的一個(gè)內(nèi)容。如果我們對(duì)本課內(nèi)容作一分析的話,會(huì)發(fā)現(xiàn)這兩部分內(nèi)容無(wú)論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處。基于這一認(rèn)識(shí),在課的開始我作了如下的設(shè)計(jì):
“今天我們學(xué)習(xí)公因數(shù)與最大公因數(shù)。對(duì)于今天學(xué)習(xí)的內(nèi)容你有什么猜測(cè)?”
學(xué)生已經(jīng)學(xué)過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學(xué)生自由猜測(cè),學(xué)生通過對(duì)已有認(rèn)知的檢索,必定會(huì)催生出自己的一些想法,從課的實(shí)施情況來(lái)看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學(xué)生的思考與思維的碰撞中得到了較好的生成。無(wú)疑這樣的設(shè)計(jì)貼近學(xué)生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎(chǔ)。
二、提供把學(xué)生置于問題情景之中的機(jī)會(huì),營(yíng)造一個(gè)激勵(lì)探索和理解的氣氛
“對(duì)于今天學(xué)習(xí)的內(nèi)容你有什么猜測(cè)?”這一問題的包容性較大,不同的學(xué)生面對(duì)這一問題都能說出自己不同的猜測(cè),學(xué)生的差異與個(gè)性得到了較好的尊重,真正體現(xiàn)了面向全體的思想。不同學(xué)生在思考這一問題時(shí)都有了自己的見解,在相互補(bǔ)充與想互啟發(fā)中生成了本課教學(xué)的內(nèi)容,使學(xué)生充分體會(huì)了合作的魅力,構(gòu)建了一個(gè)和諧的課堂生活。在這一過程中學(xué)生深深地體會(huì)到數(shù)學(xué)知識(shí)并不是那么高深莫測(cè)、可敬而不可親。數(shù)學(xué)并不可怕,它其實(shí)滋生于原有的知識(shí),植根于生活經(jīng)驗(yàn)之中。這樣的教學(xué)無(wú)疑有利于培養(yǎng)學(xué)生的自信心,而自信心的培養(yǎng)不就是教育最有意義而又最根本的內(nèi)容嗎?
三、讓學(xué)生進(jìn)行獨(dú)立思考和自主探索
通過學(xué)生的猜測(cè),我把學(xué)生的提出的問題進(jìn)行了整理:
(1)什么是公因數(shù)與最大公因數(shù)?
(2)怎樣找公因數(shù)與最大公因數(shù)?
(3)為什么是最大公因數(shù)而不是最小公因數(shù)?
(4)這一部分知識(shí)到底有什么作用?
我先讓學(xué)生獨(dú)立思考?然后組織交流,最后讓學(xué)生自學(xué)課本
這樣的設(shè)計(jì)對(duì)學(xué)生來(lái)說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學(xué)生的主體性。在這一過程中學(xué)生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標(biāo)準(zhǔn)》中倡導(dǎo)給學(xué)生提供探索與交流的時(shí)間和空間的應(yīng)有之意吧。