公因數和最大公因數 教學設計
【教學目標】1、使學生在具體的操作活動中,認識公因數和最大公因數,會在集合圖中分別表示兩個數的因數和它們的公因數。
2、 使學生會用列舉的方法找到100以內兩個數的公因數和最大公因數,并能在解決問題的過程中主動探索簡捷的方法,進行有條理的思考。
3、使學生在自主探索與合作交流的過程中,進一步發展與同伴進行合作交流的意識和能力,獲得成功的體驗。
【教學重、難點】
理解兩個數的公因數和最大公因數的含義。
【教學準備】
學生準備12cm、寬8cm的長方形紙片,6張邊長6cm的正方形紙片,8張邊長4cm的正方形紙片。
【教學過程】
一、創設情境,激趣導課
1、這節課老師先請大家幫我解決一個問題:我們家有一個長18分米、寬12分米的貯藏室.現在老師想給貯藏室里鋪上地磚。我在瓷磚市場看到兩種磚,一種是邊長為4分米的正方形瓷磚,一種是邊長6分米的正方形瓷磚,你們幫我選一選,哪一種瓷磚能正好用整塊鋪滿?
二、動手操作,探求新知
1、請同學們拿出準備好的長方形、正方形紙片,自己試著擺一擺。
2、生操作,師檢查。
3、通過擺小正方形,我們發現了什么?老師應該選哪一種地磚?
(邊長6分米的正好整塊鋪滿,邊長4分米的不能正好鋪滿 ,應該選邊長6分米的地磚。
4、邊長6分米的地磚長邊和寬邊各鋪了幾塊?用算式怎樣表示?地磚的邊長6分米和貯藏室的長18分米,寬12分米有什么關系?
(長鋪3塊 18÷6=3
寬鋪2塊 12÷6=2 6即能被18整除,也能被12整除)
5、邊長4分米的地磚不能正好鋪滿?長、寬邊各鋪了幾次?用算式怎樣表示?
(長鋪了4次 18÷4=4…2
寬鋪了3次 12÷4=3 4不能被長18整除,所以鋪不滿,能被12整除,所以寬能鋪滿)
6、比較兩組算式,說說地磚的邊長符合什么條件能用整塊正好鋪滿?
邊長既能被12整除,也能被18整除。
7、想象延伸
根據我們得出的結論,你在頭腦里想一想,貯藏室還可以選擇邊長幾分米的地磚?小組互相交流,并說說你是怎么想的?
(邊長 1分米,2分米,3分米的正方形地磚都能正好整筷鋪滿,因為這3個數既能被12整除,也能被18整除。)
1、2、3、6這4個數與18有什么關系?與12呢?
8、揭示概念
講述:1、2、3和6既是18的因數,又是12的因數,它們就是12和18的公因數。其中最大的公因數是6,6就是12和18的最大公因數。
9、4是18和12的公因數嗎?為什么?
三、自主探索,用列舉的方法求公因數和最大公因數。
1、剛才我們認識了公因數和最大公因數,那么怎樣求兩個數的公因數和最大公因數呢?接下來我們一起探究這個問題。
(自主探索)提問:12和8的公因數有哪些?最大公因數是幾?
你能試著用列舉的方法找一找嗎?
2、交流可能想到的方法有:
①依次分別寫出8和12的所有因數,再找出公因數
②先找8的因數,再從8的因數里找出12的因數
③先找12的因數,再從12的因數里找出8的因數
比較②、③種方法,這兩種方法有什么相同之處?哪一種簡單,為什么?(8的因數個數少。)
3、明確:8和12的公因數有1、2、4。4就是8 和12的最大公因數。
4、用集合圖表示
8 和12的公因數也可以用集合圈來表示,我們用左邊的圈表示8的因數,用右邊的圈表示12的因數,那么相交的部分表示什么?應該填什么數?