等差數(shù)列的前n項(xiàng)和
教學(xué)目標(biāo)1.把握等差數(shù)列前 項(xiàng)和的公式,并能運(yùn)用公式解決簡(jiǎn)單的問題.
(1)了解等差數(shù)列前 項(xiàng)和的定義,了解逆項(xiàng)相加的原理,理解等差數(shù)列前 項(xiàng)和公式推導(dǎo)的過程,記憶公式的兩種形式;
(2)用方程思想熟悉等差數(shù)列前 項(xiàng)和的公式,利用公式求 ;等差數(shù)列通項(xiàng)公式與前 項(xiàng)和的公式兩套公式涉及五個(gè)字母,已知其中三個(gè)量求另兩個(gè)值;
(3)會(huì)利用等差數(shù)列通項(xiàng)公式與前 項(xiàng)和的公式研究 的最值.
2.通過公式的推導(dǎo)和公式的運(yùn)用,使學(xué)生體會(huì)從非凡到一般,再從一般到非凡的思維規(guī)律,初步形成熟悉問題,解決問題的一般思路和方法.
3.通過公式推導(dǎo)的過程教學(xué),對(duì)學(xué)生進(jìn)行思維靈活性與廣闊性的練習(xí),發(fā)展學(xué)生的思維水平.
4.通過公式的推導(dǎo)過程,展現(xiàn)數(shù)學(xué)中的對(duì)稱美;通過有關(guān)內(nèi)容在實(shí)際生活中的應(yīng)用,使學(xué)生再一次感受數(shù)學(xué)源于生活,又服務(wù)于生活的實(shí)用性,引導(dǎo)學(xué)生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數(shù)學(xué)地解決問題.
教學(xué)建議
(1)知識(shí)結(jié)構(gòu)
本節(jié)內(nèi)容是等差數(shù)列前 項(xiàng)和公式的推導(dǎo)和應(yīng)用,首先通過具體的例子給出了求等差數(shù)列前 項(xiàng)和的思路,而后導(dǎo)出了一般的公式,并加以應(yīng)用;再與等差數(shù)列通項(xiàng)公式組成方程組,共同運(yùn)用,解決有關(guān)問題.
(2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)是等差數(shù)列前 項(xiàng)和公式的推導(dǎo)和應(yīng)用,難點(diǎn)是公式推導(dǎo)的思路.
推導(dǎo)過程的展示體現(xiàn)了人類解決問題的一般思路,即從非凡問題的解決中提煉一般方法,再試圖運(yùn)用這一方法解決一般情況,所以推導(dǎo)公式的過程中所蘊(yùn)含的思想方法比公式本身更為重要.等差數(shù)列前 項(xiàng)和公式有兩種形式,應(yīng)根據(jù)條件選擇適當(dāng)?shù)男问竭M(jìn)行計(jì)算;另外反用公式、變用公式、前 項(xiàng)和公式與通項(xiàng)公式的綜合運(yùn)用體現(xiàn)了方程(組)思想.
高斯算法表現(xiàn)了大數(shù)學(xué)家的聰明和巧思,對(duì)一般學(xué)生來說有很大難度,但大多數(shù)學(xué)生都聽說過這個(gè)故事,所以難點(diǎn)在于一般等差數(shù)列求和的思路上.
(3)教法建議
①本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為公式推導(dǎo)及簡(jiǎn)單應(yīng)用,一節(jié)側(cè)重于通項(xiàng)公式與前 項(xiàng)和公式綜合運(yùn)用.
②前 項(xiàng)和公式的推導(dǎo),建議由具體問題引入,使學(xué)生體會(huì)問題源于生活.
③強(qiáng)調(diào)從非凡到一般,再從一般到非凡的思考方法與研究方法.
④補(bǔ)充等差數(shù)列前 項(xiàng)和的最大值、最小值問題.
⑤用梯形面積公式記憶等差數(shù)列前 項(xiàng)和公式.
等差數(shù)列的前項(xiàng)和公式教學(xué)設(shè)計(jì)示例
教學(xué)目標(biāo)
1.通過教學(xué)使學(xué)生理解等差數(shù)列的前 項(xiàng)和公式的推導(dǎo)過程,并能用公式解決簡(jiǎn)單的問題.
2.通過公式推導(dǎo)的教學(xué)使學(xué)生進(jìn)一步體會(huì)從非凡到一般,再從一般到非凡的思想方法,通過公式的運(yùn)用體會(huì)方程的思想.
教學(xué)重點(diǎn),難點(diǎn)
教學(xué)重點(diǎn)是等差數(shù)列的前 項(xiàng)和公式的推導(dǎo)和應(yīng)用,難點(diǎn)是獲得推導(dǎo)公式的思路.