等差數列的前n項和(精選7篇)
等差數列的前n項和 篇1
教學目標
1.掌握等差數列前 項和的公式,并能運用公式解決簡單的問題.
(1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;
(2)用方程思想認識等差數列前 項和的公式,利用公式求 ;等差數列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
。3)會利用等差數列通項公式與前 項和的公式研究 的最值.
2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規律,初步形成認識問題,解決問題的一般思路和方法.
3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發展學生的思維水平.
4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.
教學建議
。1)知識結構
本節內容是等差數列前 項和公式的推導和應用,首先通過具體的例子給出了求等差數列前 項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.
。2)重點、難點分析
教學重點是等差數列前 項和公式的推導和應用,難點是公式推導的思路.
推導過程的展示體現了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前 項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現了方程(組)思想.
高斯算法表現了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.
。3)教法建議
、俦竟潈热莘譃閮烧n時,一節為公式推導及簡單應用,一節側重于通項公式與前 項和公式綜合運用.
、谇 項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.
、蹚娬{從特殊到一般,再從一般到特殊的思考方法與研究方法.
、苎a充等差數列前 項和的最大值、最小值問題.
⑤用梯形面積公式記憶等差數列前 項和公式.
等差數列的前項和公式教學設計示例
教學目標
1.通過教學使學生理解等差數列的前 項和公式的推導過程,并能用公式解決簡單的問題.
2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數列的前 項和公式的推導和應用,難點是獲得推導公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)
問題就是(板書)“ ”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.
我們希望求一般的等差數列的和,高斯算法對我們有何啟發?
二.講解新課
(板書)等差數列前 項和公式
1.公式推導(板書)
問題(幻燈片):設等差數列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數列求和的指導意義.
思路一:運用基本量思想,將各項用 和 表示,得
,有以下等式
,問題是一共有多少個 ,似乎與 的奇偶有關.這個思路似乎進行不下去了.
思路二:
上面的等式其實就是 ,為回避個數問題,做一個改寫 , ,兩式左右分別相加,得
,
于是有: .這就是倒序相加法.
思路三:受思路二的啟發,重新調整思路一,可得 ,于是 .
于是得到了兩個公式(投影片): 和 .
2.公式記憶
用梯形面積公式記憶等差數列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前 項和的兩個公式.
3.公式的應用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1) ;
(2) (結果用 表示)
解題的關鍵是數清項數,小結數項數的方法.
例2.等差數列 中前多少項的和是9900?
本題實質是反用公式,解一個關于 的一元二次函數,注意得到的項數 必須是正整數.
三.小結
1.推導等差數列前 項和公式的思路;
2.公式的應用中的數學思想.
四.板書設計
等差數列的前n項和 篇2
教學目標
1.掌握等差數列前 項和的公式,并能運用公式解決簡單的問題.
。1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;
(2)用方程思想認識等差數列前 項和的公式,利用公式求 ;等差數列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
。3)會利用等差數列通項公式與前 項和的公式研究 的最值.
2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規律,初步形成認識問題,解決問題的一般思路和方法.
3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發展學生的思維水平.
4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.
教學建議
。1)知識結構
本節內容是等差數列前 項和公式的推導和應用,首先通過具體的例子給出了求等差數列前 項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.
。2)重點、難點分析
教學重點是等差數列前 項和公式的推導和應用,難點是公式推導的思路.
推導過程的展示體現了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前 項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現了方程(組)思想.
高斯算法表現了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.
(3)教法建議
、俦竟潈热莘譃閮烧n時,一節為公式推導及簡單應用,一節側重于通項公式與前 項和公式綜合運用.
、谇 項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.
、蹚娬{從特殊到一般,再從一般到特殊的思考方法與研究方法.
、苎a充等差數列前 項和的最大值、最小值問題.
⑤用梯形面積公式記憶等差數列前 項和公式.
等差數列的前項和公式教學設計示例
教學目標
1.通過教學使學生理解等差數列的前 項和公式的推導過程,并能用公式解決簡單的問題.
2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數列的前 項和公式的推導和應用,難點是獲得推導公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)
問題就是(板書)“ ”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.
我們希望求一般的等差數列的和,高斯算法對我們有何啟發?
二.講解新課
(板書)等差數列前 項和公式
1.公式推導(板書)
問題(幻燈片):設等差數列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數列求和的指導意義.
思路一:運用基本量思想,將各項用 和 表示,得
,有以下等式
,問題是一共有多少個 ,似乎與 的奇偶有關.這個思路似乎進行不下去了.
思路二:
上面的等式其實就是 ,為回避個數問題,做一個改寫 , ,兩式左右分別相加,得
,
于是有: .這就是倒序相加法.
思路三:受思路二的啟發,重新調整思路一,可得 ,于是 .
于是得到了兩個公式(投影片): 和 .
2.公式記憶
用梯形面積公式記憶等差數列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前 項和的兩個公式.
3.公式的應用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1) ;
。2) (結果用 表示)
解題的關鍵是數清項數,小結數項數的方法.
例2.等差數列 中前多少項的和是9900?
本題實質是反用公式,解一個關于 的一元二次函數,注意得到的項數 必須是正整數.
三.小結
1.推導等差數列前 項和公式的思路;
2.公式的應用中的數學思想.
四.板書設計
等差數列的前n項和 篇3
教學目的:1.掌握等差數列前n項和公式及其獲取思路. 2.會用等差數列的前n項和公式解決一些簡單的與前n項和有關的問題 教學重點:等差數列n項和公式的理解、推導及應 教學難點:靈活應用等差數列前n項公式解決一些簡單的有關問題 教學過程: 一、復習引入:首先回憶一下前幾節課所學主要內容:1.等差數列的定義: - =d ,(n≥2,n∈n+) 2.等差數列的通項公式: ( 或 =pn+q (p、q是常數)) 3.幾種計算公差d的方法:① d= - ② d= ③ d= 4.等差中項: 成等差數列 5.等差數列的性質: m+n=p+q (m, n, p, q ∈n )6.偉大的數學家,天文學家,高斯十歲時計算1+2+…100的小故事, 小高斯的計算方法啟發我們下面要研究的求等差數列前n項和的一種很重要的思想方法,— “倒序相加”法。 二、講解新課: 1.數列的前n項和的定義:數列 中, 稱為數列 的前n項和,記為 . 2.等差數列的前 項和公式1: 證明: ① ②①+②: ∵ ∴ 由此得: 1 3. 等差數列的前 項和公式2: 把 代入公式1即得: 24. 等差數列的前 項和公式的函數解析式特征:公式2又可化成式子: ,當d≠0,是一個常數項為零的二次式。 5.用方程思想理解等差數列的通項公式與前n項和公式:等差數列的通項公式與前n項和公式反映了等差數列的五個基本元素:a1,d,n,an,sn 之間的關系,從方程的角度看,它們可以構成兩個獨立方程(前n項和公式1、2是等價的),五元素中“知三求二”,解常規問題可以通過解方程或解方程組解決. 三、例題講解 例1 某長跑運動員7天里每天的訓練量(單位:m)是:
7500
8000
8500
9000
9500
10000
1050
這位運動員7天共跑了多少米?(課本p116例1) 例2 等差數列-10,-6,-2,2,…前多少項的和是54?(課本p116例2) 例3 求集合m={m|m=7n,n∈n*,且m<100}中元素的個數,并求這些元素的和. (課本p117例3) 例4 .已知等差數列{ }中 =13且 = ,那么n取何值時, 取最大值. 解法1:設公差為d,由 = 得: 3×13+3×2d/2=11×13+11×10d/2 d= -2, =13-2(n-1), =15-2n, 由 即 得:6.5≤n≤7.5,所以n=7時, 取最大值. 解法2:由解1得d= -2,又a1=13所以 = - n +14 n = -(n-7) +49 ∴當n=7, 取最大值。 對等差數列前項和的最值問題有兩種方法:(1) 利用 : 當 >0,d<0,前n項和有最大值?捎 ≥0,且 ≤0,求得n的值。 當 <0,d>0,前n項和有最小值?捎 ≤0,且 ≥0,求得n的值。 (2) 利用 : 由 利用二次函數配方法求得最值時n的值。 四、練習: 已知一個等差數列的前10項的和是310,前20項的和是1220,求其前 項和的公式.(課本p117 例4) 五、小結 本節課學習了以下內容:1.等差數列的前 項和公式1: 2.等差數列的前 項和公式2: 3. ,當d≠0,是一個常數項為零的二次式 4.對等差數列前項和的最值問題有兩種方法:(3) 利用 : 當 >0,d<0,前n項和有最大值?捎 ≥0,且 ≤0,求得n的值。 當 <0,d>0,前n項和有最小值?捎 ≤0,且 ≥0,求得n的值。 (4) 利用 : 二次函數配方法求得最值時n的值。 六、作業:課本p118 習題3.3 1(2)、(4),2(2)、(4),6(2),7,8.
等差數列的前n項和 篇4
教學目標
1.把握等差數列前 項和的公式,并能運用公式解決簡單的問題.
(1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;
(2)用方程思想熟悉等差數列前 項和的公式,利用公式求 ;等差數列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
(3)會利用等差數列通項公式與前 項和的公式研究 的最值.
2.通過公式的推導和公式的運用,使學生體會從非凡到一般,再從一般到非凡的思維規律,初步形成熟悉問題,解決問題的一般思路和方法.
3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的練習,發展學生的思維水平.
4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.
教學建議
(1)知識結構
本節內容是等差數列前 項和公式的推導和應用,首先通過具體的例子給出了求等差數列前 項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.
(2)重點、難點分析
教學重點是等差數列前 項和公式的推導和應用,難點是公式推導的思路.
推導過程的展示體現了人類解決問題的一般思路,即從非凡問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前 項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現了方程(組)思想.
高斯算法表現了大數學家的聰明和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.
(3)教法建議
①本節內容分為兩課時,一節為公式推導及簡單應用,一節側重于通項公式與前 項和公式綜合運用.
、谇 項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.
、蹚娬{從非凡到一般,再從一般到非凡的思考方法與研究方法.
④補充等差數列前 項和的最大值、最小值問題.
、萦锰菪蚊娣e公式記憶等差數列前 項和公式.
等差數列的前項和公式教學設計示例
教學目標
1.通過教學使學生理解等差數列的前 項和公式的推導過程,并能用公式解決簡單的問題.
2.通過公式推導的教學使學生進一步體會從非凡到一般,再從一般到非凡的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數列的前 項和公式的推導和應用,難點是獲得推導公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的v形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個v形架上共放著多少支鉛筆?(課件設計見課件展示)
問題就是(板書)“ ”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.
我們希望求一般的等差數列的和,高斯算法對我們有何啟發?
二.講解新課
(板書)等差數列前 項和公式
1.公式推導(板書)
問題(幻燈片):設等差數列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數列求和的指導意義.
思路一:運用基本量思想,將各項用 和 表示,得
,有以下等式
,問題是一共有多少個 ,似乎與 的奇偶有關.這個思路似乎進行不下去了.
思路二:
上面的等式其實就是 ,為回避個數問題,做一個改寫 , ,兩式左右分別相加,得
,
于是有: .這就是倒序相加法.
思路三:受思路二的啟發,重新調整思路一,可得 ,于是 .
于是得到了兩個公式(投影片): 和 .
2.公式記憶
用梯形面積公式記憶等差數列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前 項和的兩個公式.
3.公式的應用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1) ;
(2) (結果用 表示)
解題的關鍵是數清項數,小結數項數的方法.
例2.等差數列 中前多少項的和是9900?
本題實質是反用公式,解一個關于 的一元二次函數,注重得到的項數 必須是正整數.
三.小結
1.推導等差數列前 項和公式的思路;
2.公式的應用中的數學思想.
四.板書設計
等差數列的前n項和 篇5
教學目的:1.進一步熟練掌握等差數列的通項公式和前n項和公式. 2.了解等差數列的一些性質,并會用它們解決一些相關問題. 教學重點:熟練掌握等差數列的求和公式 教學難點:靈活應用求和公式解決問題 教學過程: 一、復習引入:首先回憶一下上一節課所學主要內容: 1.等差數列的前 項和公式1: 2.等差數列的前 項和公式2: 3. ,當d≠0,是一個常數項為零的二次式 4.對等差數列前項和的最值問題有兩種方法:(1) 利用 : 當 >0,d<0,前n項和有最大值?捎 ≥0,且 ≤0,求得n的值。 當 <0,d>0,前n項和有最小值?捎 ≤0,且 ≥0,求得n的值。 (2) 利用 :由 二次函數配方法求得最值時n的值。 二、例題講解 例1 . 已知等差數列的前 項和為 ,前 項和為 ,求前 項和. 解:由題設 ∴ 而 例2 已知一個等差數列的前四項和為21,后四項和為67,前n項和為286,求項數.
分析:若把有窮數列{an} 的前n項和sn的平均值 叫做數列的平均值,記為 ,即 則sn=n .根據等差數列的性質易知, .(答案:n=26).
例3 等差數列 中, 該數列的前多少項和最小?
思路1:求出sn的函數解析式(n的二次函數, ),再求函數取得最小值時的n值. 思路2:公差下為0的等差數列等差數列前n項和最小的條件為: 思路3:由s9=s12得s12-s9=a10+a11+a12=0得a11=0. 例4. 已知數列{an}的前n 項和 ,求數列{|an|}的前n項和tn. 解: 當 時, ∵n=1也適合上式,∴數列的通項公式為an=-3n+104 ( ) 由an=-3n+104≥0得n≤34.7,即當n≤34時,an>0,當n≥35時an<0.(1) 即當n≤34時,tn=|a1|+|a2|+…+|an|=a1+a2+…+an= . (2) 當n≥35時, tn=|a1|+|a2|+…+|an|=(a1+a2+…+a34)- (a35+a36+…+an) =2(a1+a2+…+a34)-( a1+a2+…+an)=2s34-sn 三、練習: 1.一個等差數列前4項的和是24,前5項的和與前2項的和的差是27,求這個等差數列的通項公式. 2.兩個數列1, , , ……, , 5和1, , , ……, , 5均成等差數列公差分別是 , , 求 與 的值。 3.在等差數列{ }中, =-15, 公差d=3, 求數列{ }的前n項和 的最小值。 四、作業:課時p119習題3.3 9,10, 《精析精練》p122 智能達標訓練.
等差數列的前n項和 篇6
教學目標
1.掌握等差數列前 項和的公式,并能運用公式解決簡單的問題.
。1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;
(2)用方程思想認識等差數列前 項和的公式,利用公式求 ;等差數列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
。3)會利用等差數列通項公式與前 項和的公式研究 的最值.
2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規律,初步形成認識問題,解決問題的一般思路和方法.
3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發展學生的思維水平.
4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.
教學建議
。1)知識結構
本節內容是等差數列前 項和公式的推導和應用,首先通過具體的例子給出了求等差數列前 項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.
。2)重點、難點分析
教學重點是等差數列前 項和公式的推導和應用,難點是公式推導的思路.
推導過程的展示體現了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前 項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現了方程(組)思想.
高斯算法表現了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.
。3)教法建議
①本節內容分為兩課時,一節為公式推導及簡單應用,一節側重于通項公式與前 項和公式綜合運用.
、谇 項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.
③強調從特殊到一般,再從一般到特殊的思考方法與研究方法.
④補充等差數列前 項和的最大值、最小值問題.
⑤用梯形面積公式記憶等差數列前 項和公式.
等差數列的前項和公式教學設計示例
教學目標
1.通過教學使學生理解等差數列的前 項和公式的推導過程,并能用公式解決簡單的問題.
2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數列的前 項和公式的推導和應用,難點是獲得推導公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)
問題就是(板書)“ ”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.
我們希望求一般的等差數列的和,高斯算法對我們有何啟發?
二.講解新課
。ò鍟┑炔顢盗星 項和公式
1.公式推導(板書)
問題(幻燈片):設等差數列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數列求和的指導意義.
思路一:運用基本量思想,將各項用 和 表示,得
,有以下等式
,問題是一共有多少個 ,似乎與 的奇偶有關.這個思路似乎進行不下去了.
思路二:
上面的等式其實就是 ,為回避個數問題,做一個改寫 , ,兩式左右分別相加,得
,
于是有: .這就是倒序相加法.
思路三:受思路二的啟發,重新調整思路一,可得 ,于是 .
于是得到了兩個公式(投影片): 和 .
2.公式記憶
用梯形面積公式記憶等差數列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前 項和的兩個公式.
3.公式的應用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1) ;
(2) (結果用 表示)
解題的關鍵是數清項數,小結數項數的方法.
例2.等差數列 中前多少項的和是9900?
本題實質是反用公式,解一個關于 的一元二次函數,注意得到的項數 必須是正整數.
三.小結
1.推導等差數列前 項和公式的思路;
2.公式的應用中的數學思想.
四.板書設計
等差數列的前n項和 篇7
教學目標
1.通過教學使學生理解等差數列的前 項和公式的推導過程,并能用公式解決簡單的問題.
2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數列的前 項和公式的推導和應用,難點是獲得推導公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)
問題就是(板書)“ ”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.
我們希望求一般的等差數列的和,高斯算法對我們有何啟發?
二.講解新課
。ò鍟┑炔顢盗星 項和公式
1.公式推導(板書)
問題(幻燈片):設等差數列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數列求和的指導意義.
思路一:運用基本量思想,將各項用 和 表示,得
,有以下等式
,問題是一共有多少個 ,似乎與 的奇偶有關.這個思路似乎進行不下去了.
思路二:
上面的等式其實就是 ,為回避個數問題,做一個改寫 , ,兩式左右分別相加,得
,
于是有: .這就是倒序相加法.
思路三:受思路二的啟發,重新調整思路一,可得 ,于是 .
于是得到了兩個公式(投影片): 和 .
2.公式記憶
用梯形面積公式記憶等差數列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前 項和的兩個公式.
3.公式的應用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1) ;
(2) (結果用 表示)
解題的關鍵是數清項數,小結數項數的方法.
例2.等差數列 中前多少項的和是9900?
本題實質是反用公式,解一個關于 的一元二次函數,注意得到的項數 必須是正整數.
三.小結
1.推導等差數列前 項和公式的思路;
2.公式的應用中的數學思想.
四.板書設計