中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 高中數學教案 > 高一數學教案 > 等差數列(精選12篇)

等差數列

發布時間:2023-08-18

等差數列(精選12篇)

等差數列 篇1

  教學目標                        1.明確等差中的概念.     2.進一步熟練掌握等差數列的通項公式及推導公式     3.培養學生的應用意識.     教學重點                    等差數列的性質的理解及應用     教學難點                    靈活應用等差數列的定義及性質解決一些相關問題     教學方法                        講練相結合     教具準備                        投影片2張(內容見下面) 教學過程                        (i)復習回顧 師:首先回憶一下上節課所學主要內容: 1.  等差數列定義: (n≥2) 2.  等差數列通項公式: (n≥2) 推導公式: (ⅱ)講授新課 師:先來看這樣兩個例題(放投影片1) 例1:在等差數列 中,已知 , ,求首項 與公差 例2:梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數列,計算中間各級的寬度。1.  解:由題意可知 解之得 即這個數列的首項是-2,公差是3。 或由題意可得: 即:31=10+7d 可求得d=3,再由 求得1=-2 2.  解設 表示梯子自上而上各級寬度所成的等差數列,由已知條件,可知: a1=33,  a12=110,n=12 ∴ ,即時10=33+11 解之得: 因此, 答:梯子中間各級的寬度從上到下依次是40cm,47cm,54cm,61cm,68cm,75cm,82cm,89cm,96cm,103cm. 師:[提問]如果在 與 中間插入一個數a,使 ,a, 成等差數列數列,那么a應滿足什么條件? 生:由定義得a- = -a 即: 反之,若 ,則a- = -a 師:由此可可得: 成等差數列,若 ,a, 成等差數列,那么a叫做 與 的等差中項。 不難發現,在一個等差數列中,從第2項起,每一項(有窮數列的末項除外)都是它的前一項與后一項的等差中項。 如數列:1,3,5,7,9,11,13…中 5是否和風細雨的等差中項,1和9的等差中項。 9是7和11的等差中項,5和13的等差中項。 看來, 從而可得在一等差數列中,若m+n=p+q 則, 生:結合例子,熟練掌握此性質 師:再來看例3。(放投影片2) 生:思考例題 例3:已知數列的通項公式為: 分析:由等差數列的定義,要判定 是不是等差數列,只要看 (n≥2)是不是一個與n無關的常數。 解:取數列 中的任意相鄰兩項 與 (n≥2), 則: 它是一個與n無關的常數,所以 是等差數列。在 中令n=1,得: ,所以這個等差數列的首項是p=q,公差是p.看來,等差數列的通項公式可以表示為: ,其中 、 是常數。 (ⅲ)課堂練習 生:(口答) (書面練習) 師:給出答案 生:自評練習 (ⅳ)課時小結 師:本節主要概念:等差中項 另外,注意靈活應用等差數列定義及通項公式解決相關問題。 (ⅴ)課后作業 一、課本 二、1.預習內容     2.預習提綱:①等差數列的前n項和公式; ②等差數列前n項和的簡單應用。 教學后記                 

等差數列 篇2

  教學目標

  1.理解等差數列的概念,把握等差數列的通項公式,并能運用通項公式解決簡單的問題.

  (1)了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判定一個數列是等差數列,了解等差中項的概念;

  (2)正確熟悉使用等差數列的各種表示法,能靈活運用通項公式求等差數列的首項、公差、項數、指定的項;

  (3)能通過通項公式與圖像熟悉等差數列的性質,能用圖像與通項公式的關系解決某些問題.

  2.通過等差數列的圖像的應用,進一步滲透數形結合思想、函數思想;通過等差數列通項公式的運用,滲透方程思想.

  3.通過等差數列概念的歸納概括,培養學生的觀察、分析資料的能力,積極思維,追求新知的創新意識;通過對等差數列的研究,使學生明確等差數列與一般數列的內在聯系,從而滲透非凡與一般的辯證唯物主義觀點.

  關于等差數列的教學建議

  (1)知識結構

  (2)重點、難點分析

  ①教學重點是等差數列的定義和對通項公式的熟悉與應用,等差數列是非凡的數列,定義恰恰是其非凡性、也是本質屬性的準確反映和高度概括,準確把握定義是正確熟悉等差數列,解決相關問題的前提條件.通項公式是項與項數的函數關系,是研究一個數列的重要工具,等差數列的通項公式的結構與一次函數的解析式密切相關,通過函數圖象研究數列性質成為可能.

  ②通過不完全歸納法得出等差數列的通項公式,所以是教學中的一個難點;另外, 出現在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點.

  (3)教法建議

  ①本節內容分為兩課時,一節為等差數列的定義與表示法,一節為等差數列通項公式的應用.

  ②等差數列定義的引出可先給出幾組等差數列,讓學生觀察、比較,概括共同規律,再由學生嘗試說出等差數列的定義,對程度差的學生可以提示定義的結構:“……的數列叫做等差數列”,由學生把限定條件一一列舉出來,為等比數列的定義作預備.假如學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是等差數列的數列作為反例,再由學生修改其定義,逐步完善定義.

  ③等差數列的定義歸納出來后,由學生舉一些等差數列的例子,以此讓學生思考確定一個等差數列的條件.

  ④由學生根據一般數列的表示法嘗試表示等差數列,前提條件是已知數列的首項與公差.明確指出其圖像是一條直線上的一些點,根據圖像觀察項隨項數的變化規律;再看通項公式,項 可看作項數 的一次型( )函數,這與其圖像的外形相對應.

  ⑤有窮等差數列的末項與通項是有區別的,數列的通項公式 是數列第 項 與項數 之間的函數關系式,有窮等差數列的項數未必是 ,即其末項未必是該數列的第 項,在教學中一定要強調這一點.

  ⑥等差數列前 項和的公式推導離不開等差數列的性質,所以在本節課應補充一些重要的性質;另外可讓學生研究等差數列的子數列,有規律的子數列會引起學生的愛好.

  ⑦等差數列是現實生活中廣泛存在的數列的數學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關問題,自己嘗試解決,為學生提供相互學習的機會,創設相互研討的課堂環境.

  等差數列通項公式的教學設計示例

  教學目標

  1.通過教與學的互動,使學生加深對等差數列通項公式的熟悉,能參與編擬一些簡單的問題,并解決這些問題;

  2.利用通項公式求等差數列的項、項數、公差、首項,使學生進一步體會方程思想;

  3.通過參與編題解題,激發學生學習的愛好.

  教學重點,難點

  教學重點是通項公式的熟悉;教學難點是對公式的靈活運用.

  教學用具

  實物投影儀,多媒體軟件,電腦.

  教學方法

  研探式.

  教學過程

  一.復習提問

  前一節課我們學習了等差數列的概念、表示法,請同學們回憶等差數列的定義,其表示法都有哪些?

  等差數列的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.

  二.主體設計

  通項公式 反映了項 與項數 之間的函數關系,當等差數列的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知 求 ).找學生試舉一例如:“已知等差數列 中,首項 ,公差 ,求 .”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用等差數列通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

  1.方程思想的運用

  (1)已知等差數列 中,首項 ,公差 ,則-397是該數列的第______項.

  (2)已知等差數列 中,首項 , 則公差

  (3)已知等差數列 中,公差 , 則首項

  這一類問題先由學生解決,之后教師點評,四個量 , 在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

  2.基本量方法的使用

  (1)已知等差數列 中, ,求 的值.

  (2)已知等差數列 中, , 求 .

  若學生的題目只有這兩種類型,教師可以小結(最好請出題者、解題者概括):因為已知條件可以化為關于 和 的二元方程組,所以這些等差數列是確定的,由 和 寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于 和 的二元方程組,以求得 和 , 和 稱作基本量.

  教師提出新的問題,已知等差數列的一個條件(等式),能否確定一個等差數列?學生回答后,教師再啟發,由這一個條件可得到關于 和 的二元方程,這是一個 和 的制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).

  如:已知等差數列 中, …

  由條件可得 即 ,可知 ,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發現規律,完善問題

  (3)已知等差數列 中, 求 ; ; ; ;….

  類似的還有

  (4)已知等差數列 中, 求 的值.

  以上屬于對數列的項進行定量的研究,有無定性的判定?引出

  3.研究等差數列的單調性

  ,考察 隨項數 的變化規律.著重考慮 的情況. 此時 是 的一次函數,其單調性取決于 的符號,由學生敘述結果.這個結果與考察相鄰兩項的差所得結果是一致的.

  4.研究項的符號

  這是為研究等差數列前 項和的最值所做的預備工作.可配備的題目如

  (1)已知數列 的通項公式為 ,問數列從第幾項開始小于0?

  (2)等差數列 從第________項起以后每項均為負數.

  三.小結

  1. 用方程思想熟悉等差數列通項公式;

  2. 用函數思想解決等差數列問題.

  四.板書設計

  等差數列通項公式1. 方程思想的運用

  2. 基本量方法的使用

  3. 研究等差數列的單調性

  4. 研究項的符號

等差數列 篇3

  教學目標 

  1.理解的概念,掌握的通項公式,并能運用通項公式解決簡單的問題.

  (1)了解公差的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等差中項的概念;

  (2)正確認識使用的各種表示法,能靈活運用通項公式求的首項、公差、項數、指定的項;

  (3)能通過通項公式與圖像認識的性質,能用圖像與通項公式的關系解決某些問題.

  2.通過的圖像的應用,進一步滲透數形結合思想、函數思想;通過通項公式的運用,滲透方程思想.

  3.通過概念的歸納概括,培養學生的觀察、分析資料的能力,積極思維,追求新知的創新意識;通過對的研究,使學生明確與一般數列的內在聯系,從而滲透特殊與一般的辯證唯物主義觀點.

  關于的教學建議

  (1)知識結構

  (2)重點、難點分析

  ①教學重點是的定義和對通項公式的認識與應用,是特殊的數列,定義恰恰是其特殊性、也是本質屬性的準確反映和高度概括,準確把握定義是正確認識,解決相關問題的前提條件.通項公式是項與項數的函數關系,是研究一個數列的重要工具,的通項公式的結構與一次函數的解析式密切相關,通過函數圖象研究數列性質成為可能.

  ②通過不完全歸納法得出的通項公式,所以是教學中的一個難點;另外, 出現在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點.

  (3)教法建議

  ①本節內容分為兩課時,一節為的定義與表示法,一節為通項公式的應用.

  ②定義的引出可先給出幾組,讓學生觀察、比較,概括共同規律,再由學生嘗試說出的定義,對程度差的學生可以提示定義的結構:“……的數列叫做”,由學生把限定條件一一列舉出來,為等比數列的定義作準備.如果學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是的數列作為反例,再由學生修改其定義,逐步完善定義.

  ③的定義歸納出來后,由學生舉一些的例子,以此讓學生思考確定一個的條件.

  ④由學生根據一般數列的表示法嘗試表示,前提條件是已知數列的首項與公差.明確指出其圖像是一條直線上的一些點,根據圖像觀察項隨項數的變化規律;再看通項公式,項 可看作項數 的一次型( )函數,這與其圖像的形狀相對應.

  ⑤有窮的末項與通項是有區別的,數列的通項公式 是數列第 項 與項數 之間的函數關系式,有窮的項數未必是 ,即其末項未必是該數列的第 項,在教學中一定要強調這一點.

  ⑥前 項和的公式推導離不開的性質,所以在本節課應補充一些重要的性質;另外可讓學生研究的子數列,有規律的子數列會引起學生的興趣.

  ⑦是現實生活中廣泛存在的數列的數學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關問題,自己嘗試解決,為學生提供相互學習的機會,創設相互研討的課堂環境.

  通項公式的教學設計示例

  教學目標 

  1.通過教與學的互動,使學生加深對通項公式的認識,能參與編擬一些簡單的問題,并解決這些問題;

  2.利用通項公式求的項、項數、公差、首項,使學生進一步體會方程思想;

  3.通過參與編題解題,激發學生學習的興趣.

  教學重點,難點

  教學重點是通項公式的認識;教學難點 是對公式的靈活運用.

  教學用具

  實物投影儀,多媒體軟件,電腦.

  教學方法

  研探式.

  教學過程 

  一.復習提問

  前一節課我們學習了的概念、表示法,請同學們回憶的定義,其表示法都有哪些?

  的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.

  二.主體設計

  通項公式 反映了項 與項數 之間的函數關系,當的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知 求 ).找學生試舉一例如:“已知 中,首項 ,公差 ,求 .”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

  1.方程思想的運用

  (1)已知 中,首項 ,公差 ,則-397是該數列的第______項.

  (2)已知 中,首項 , 則公差

  (3)已知 中,公差 , 則首項

  這一類問題先由學生解決,之后教師點評,四個量 , 在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若學生的題目只有這兩種類型,教師可以小結(最好請出題者、解題者概括):因為已知條件可以化為關于 和 的二元方程組,所以這些是確定的,由 和 寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于 和 的二元方程組,以求得 和 , 和 稱作基本量.

  教師提出新的問題,已知的一個條件(等式),能否確定一個?學生回答后,教師再啟發,由這一個條件可得到關于 和 的二元方程,這是一個 和 的制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).

  如:已知 中, …

  由條件可得 即 ,可知 ,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發現規律,完善問題

  (3)已知 中, 求 ; ; ; ;….

  類似的還有

  (4)已知 中, 求 的值.

  以上屬于對數列的項進行定量的研究,有無定性的判斷?引出

  3.研究的單調性

  ,考察 隨項數 的變化規律.著重考慮 的情況. 此時 是 的一次函數,其單調性取決于 的符號,由學生敘述結果.這個結果與考察相鄰兩項的差所得結果是一致的.

  4.研究項的符號

  這是為研究前 項和的最值所做的準備工作.可配備的題目如

  (1)已知數列 的通項公式為 ,問數列從第幾項開始小于0?

  (2) 從第________項起以后每項均為負數.

  三.小結

  1. 用方程思想認識通項公式;

  2. 用函數思想解決問題.

  四.板書設計 

  通項公式  1. 方程思想的運用

  2. 基本量方法的使用

  3. 研究的單調性

  4. 研究項的符號

等差數列 篇4

  教學目的:1.明確等差數列的定義,掌握等差數列的通項公式;    2.會解決知道 中的三個,求另外一個的問題           教學重點:等差數列的概念,等差數列的通項公式 教學難點:等差數列的性質 教學過程: 一、復習引入:(課件第一頁)   二、講解新課:        1.等差數列:一般地,如果一個數列從第二項起,每一項與它前一項的 差等于同一個常數,這個數列就叫做等差數列,這個常數就叫做等差數列的公差(常用字母“d”表示)。(課件第二頁) ⑴.公差d一定是由后項減前項所得,而不能用前項減后項來求; ⑵.對于數列{ },若 - =d (與n無關的數或字母),n≥2,n∈n ,則此數列是等差數列,d 為公差。 2.等差數列的通項公式: 【或 】等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列 的首項是 ,公差是d,則據其定義可得: 即: 即: 即: …… 由此歸納等差數列的通項公式可得:   (課件第二頁) 第二通項公式             (課件第二頁) 三、例題講解 例1 ⑴求等差數列8,5,2…的第20項(課本p111) ⑵ -401是不是等差數列-5,-9,-13…的項?如果是,是第幾項? 例2 在等差數列 中,已知 , ,求 , , 例3將一個等差數列的通項公式輸入計算器數列 中,設數列的第s項和第t項分別為 和 ,計算 的值,你能發現什么結論?并證明你的結論。  小結:①這就是第二通項公式的變形,②幾何特征,直線的斜率 例4 梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數列,計算中間各級的寬度。(課本p112例3) 例5 已知數列{ }的通項公式 ,其中 、 是常數,那么這個數列是否一定是等差數列?若是,首項與公差分別是什么?(課本p113例4)    分析:由等差數列的定義,要判定 是不是等差數列,只要看 (n≥2)是不是一個與n無關的常數。 注:①若p=0,則{ }是公差為0的等差數列,即為常數列q,q,q,… ②若p≠0, 則{ }是關于n的一次式,從圖象上看,表示數列的各點均在一次函數y=px+q的圖象上,一次項的系數是公差,直線在y軸上的截距為q. ③數列{ }為等差數列的充要條件是其通項 =pn+q (p、q是常數)。稱其為第3通項公式④判斷數列是否是等差數列的方法是否滿足3個通項公式中的一個。 例6.成等差數列的四個數的和為26,第二項與第三項之積為40,求這四個數.四、練習: 1.(1)求等差數列3,7,11,……的第4項與第10項. (2)求等差數列10,8,6,……的第20項. (3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. (4)-20是不是等差數列0,-3 ,-7,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數列{ }中,(1)已知 =10, =19,求 與d; 五、課后作業:習題3.2  1(2),(4)  2.(2), 3, 4,  5, 6 .  8.  9.

等差數列 篇5

  教學目標 

  1.理解的概念,掌握的通項公式,并能運用通項公式解決簡單的問題.

  (1)了解公差的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等差中項的概念;

  (2)正確認識使用的各種表示法,能靈活運用通項公式求的首項、公差、項數、指定的項;

  (3)能通過通項公式與圖像認識的性質,能用圖像與通項公式的關系解決某些問題.

  2.通過的圖像的應用,進一步滲透數形結合思想、函數思想;通過通項公式的運用,滲透方程思想.

  3.通過概念的歸納概括,培養學生的觀察、分析資料的能力,積極思維,追求新知的創新意識;通過對的研究,使學生明確與一般數列的內在聯系,從而滲透特殊與一般的辯證唯物主義觀點.

  關于的教學建議

  (1)知識結構

  (2)重點、難點分析

  ①教學重點是的定義和對通項公式的認識與應用,是特殊的數列,定義恰恰是其特殊性、也是本質屬性的準確反映和高度概括,準確把握定義是正確認識,解決相關問題的前提條件.通項公式是項與項數的函數關系,是研究一個數列的重要工具,的通項公式的結構與一次函數的解析式密切相關,通過函數圖象研究數列性質成為可能.

  ②通過不完全歸納法得出的通項公式,所以是教學中的一個難點;另外, 出現在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點.

  (3)教法建議

  ①本節內容分為兩課時,一節為的定義與表示法,一節為通項公式的應用.

  ②定義的引出可先給出幾組,讓學生觀察、比較,概括共同規律,再由學生嘗試說出的定義,對程度差的學生可以提示定義的結構:“……的數列叫做”,由學生把限定條件一一列舉出來,為等比數列的定義作準備.如果學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是的數列作為反例,再由學生修改其定義,逐步完善定義.

  ③的定義歸納出來后,由學生舉一些的例子,以此讓學生思考確定一個的條件.

  ④由學生根據一般數列的表示法嘗試表示,前提條件是已知數列的首項與公差.明確指出其圖像是一條直線上的一些點,根據圖像觀察項隨項數的變化規律;再看通項公式,項 可看作項數 的一次型( )函數,這與其圖像的形狀相對應.

  ⑤有窮的末項與通項是有區別的,數列的通項公式 是數列第 項 與項數 之間的函數關系式,有窮的項數未必是 ,即其末項未必是該數列的第 項,在教學中一定要強調這一點.

  ⑥前 項和的公式推導離不開的性質,所以在本節課應補充一些重要的性質;另外可讓學生研究的子數列,有規律的子數列會引起學生的興趣.

  ⑦是現實生活中廣泛存在的數列的數學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關問題,自己嘗試解決,為學生提供相互學習的機會,創設相互研討的課堂環境.

  通項公式的教學設計示例

  教學目標 

  1.通過教與學的互動,使學生加深對通項公式的認識,能參與編擬一些簡單的問題,并解決這些問題;

  2.利用通項公式求的項、項數、公差、首項,使學生進一步體會方程思想;

  3.通過參與編題解題,激發學生學習的興趣.

  教學重點,難點

  教學重點是通項公式的認識;教學難點 是對公式的靈活運用.

  教學用具

  實物投影儀,多媒體軟件,電腦.

  教學方法

  研探式.

  教學過程 

  一.復習提問

  前一節課我們學習了的概念、表示法,請同學們回憶的定義,其表示法都有哪些?

  的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.

  二.主體設計

  通項公式 反映了項 與項數 之間的函數關系,當的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知 求 ).找學生試舉一例如:“已知 中,首項 ,公差 ,求 .”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

  1.方程思想的運用

  (1)已知 中,首項 ,公差 ,則-397是該數列的第______項.

  (2)已知 中,首項 , 則公差

  (3)已知 中,公差 , 則首項

  這一類問題先由學生解決,之后教師點評,四個量 , 在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若學生的題目只有這兩種類型,教師可以小結(最好請出題者、解題者概括):因為已知條件可以化為關于 和 的二元方程組,所以這些是確定的,由 和 寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于 和 的二元方程組,以求得 和 , 和 稱作基本量.

  教師提出新的問題,已知的一個條件(等式),能否確定一個?學生回答后,教師再啟發,由這一個條件可得到關于 和 的二元方程,這是一個 和 的制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).

  如:已知 中, …

  由條件可得 即 ,可知 ,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發現規律,完善問題

  (3)已知 中, 求 ; ; ; ;….

  類似的還有

  (4)已知 中, 求 的值.

  以上屬于對數列的項進行定量的研究,有無定性的判斷?引出

  3.研究的單調性

  ,考察 隨項數 的變化規律.著重考慮 的情況. 此時 是 的一次函數,其單調性取決于 的符號,由學生敘述結果.這個結果與考察相鄰兩項的差所得結果是一致的.

  4.研究項的符號

  這是為研究前 項和的最值所做的準備工作.可配備的題目如

  (1)已知數列 的通項公式為 ,問數列從第幾項開始小于0?

  (2) 從第________項起以后每項均為負數.

  三.小結

  1. 用方程思想認識通項公式;

  2. 用函數思想解決問題.

  四.板書設計 

  通項公式  1. 方程思想的運用

  2. 基本量方法的使用

  3. 研究的單調性

  4. 研究項的符號

等差數列 篇6

  教材:(一)目的:要求學生掌握等差數列的意義,通項公式及等差中項的有關概念、計算公式,并能用來解決有關問題。過程:

  一、引導觀察數列:4,5,6,7,8,9,10,……                         3,0,-3,-6,……                     , , , ,……                        12,9,6,3,……       特點:從第二項起,每一項與它的前一項的差是常數 — “等差”

  二、得出等差數列的定義:        注意:從第二項起,后一項減去前一項的差等于同一個常數。1.名稱:   首項   公差 2.若   則該數列為常數列3.尋求等差數列的通項公式:                    由此歸納為     當 時  (成立)       注意:  1° 等差數列的通項公式是關于 的一次函數              2° 如果通項公式是關于 的一次函數,則該數列成ap          證明:若                 它是以 為首項, 為公差的ap。              3° 公式中若  則數列遞增,  則數列遞減  4° 圖象: 一條直線上的一群孤立點三、例題: 注意在 中 , , , 四數中已知三個可以求           出另一個。例一 (見教材)例二 (見教材)

  四、關于等差中項: 如果 成等差數列則       證明:設公差為 ,則               ∴    例四  《教學與測試》p77 例一:在-1與7之間順次插入三個數 使這五個數成ap,求此數列。五、小結:等差數列的定義、通項公式、等差中項六、作業:           

等差數列 篇7

  教材:(二)目的:通過例題的講解,要求學生進一步認清等差數列的有關性質意義,并且能夠用定義與通項公式來判斷一個數列是否成等差數列。過程:一、復習:等差數列的定義,通項公式    二、例一    在等差數列 中, 為公差,若 且 求證:1°     2°         證明:1°  設首項為 ,則∵   ∴ 2∵   ∴ 注意:由此可以證明一個定理:設成等差數列,則與首末兩項距離相等的兩項和等于首末兩項的和 ,即:                    同樣:若  則        例二  在等差數列 中,                 1° 若     求                 解:  即    ∴                2° 若  求           解: =                3° 若     求            解:   即    ∴                   從而                4° 若     求           解:∵ 6+6=11+1      7+7=12+2   ……                  ∴        ……                 從而 + 2                   ∴ =2 -                                                     =2×80-30=130  三、判斷一個數列是否成等差數列的常用方法      1.定義法:即證明            已知數列 的前 項和 ,求證數列 成等差數列,并求其首項、公差、通項公式。                  解:                             當 時                           時 亦滿足  ∴               首項                     ∴ 成等差數列且公差為6     2.中項法: 即利用中項公式,若  則 成等差數列。          已知 , , 成等差數列,求證 , , 也成ap。         證明: ∵ , , 成ap      ∴  化簡得:                                                                                                                =                            ∴ , , 也成等差數列。         3.通項公式法:利用等差數列得通項公式是關于 的一次函數這一性質。            例五  設數列 其前 項和 ,問這個數列成ap嗎?解: 時        時                   ∵    ∴                       ∴ 數列 不成ap   但從第2項起成等差數列。   四、小結: 略   五、作業:

等差數列 篇8

  教學目標 

  1.理解的概念,掌握的通項公式,并能運用通項公式解決簡單的問題.

  (1)了解公差的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等差中項的概念;

  (2)正確認識使用的各種表示法,能靈活運用通項公式求的首項、公差、項數、指定的項;

  (3)能通過通項公式與圖像認識的性質,能用圖像與通項公式的關系解決某些問題.

  2.通過的圖像的應用,進一步滲透數形結合思想、函數思想;通過通項公式的運用,滲透方程思想.

  3.通過概念的歸納概括,培養學生的觀察、分析資料的能力,積極思維,追求新知的創新意識;通過對的研究,使學生明確與一般數列的內在聯系,從而滲透特殊與一般的辯證唯物主義觀點.

  關于的教學建議

  (1)知識結構

  (2)重點、難點分析

  ①教學重點是的定義和對通項公式的認識與應用,是特殊的數列,定義恰恰是其特殊性、也是本質屬性的準確反映和高度概括,準確把握定義是正確認識,解決相關問題的前提條件.通項公式是項與項數的函數關系,是研究一個數列的重要工具,的通項公式的結構與一次函數的解析式密切相關,通過函數圖象研究數列性質成為可能.

  ②通過不完全歸納法得出的通項公式,所以是教學中的一個難點;另外, 出現在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點.

  (3)教法建議

  ①本節內容分為兩課時,一節為的定義與表示法,一節為通項公式的應用.

  ②定義的引出可先給出幾組,讓學生觀察、比較,概括共同規律,再由學生嘗試說出的定義,對程度差的學生可以提示定義的結構:“……的數列叫做”,由學生把限定條件一一列舉出來,為等比數列的定義作準備.如果學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是的數列作為反例,再由學生修改其定義,逐步完善定義.

  ③的定義歸納出來后,由學生舉一些的例子,以此讓學生思考確定一個的條件.

  ④由學生根據一般數列的表示法嘗試表示,前提條件是已知數列的首項與公差.明確指出其圖像是一條直線上的一些點,根據圖像觀察項隨項數的變化規律;再看通項公式,項 可看作項數 的一次型( )函數,這與其圖像的形狀相對應.

  ⑤有窮的末項與通項是有區別的,數列的通項公式 是數列第 項 與項數 之間的函數關系式,有窮的項數未必是 ,即其末項未必是該數列的第 項,在教學中一定要強調這一點.

  ⑥前 項和的公式推導離不開的性質,所以在本節課應補充一些重要的性質;另外可讓學生研究的子數列,有規律的子數列會引起學生的興趣.

  ⑦是現實生活中廣泛存在的數列的數學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關問題,自己嘗試解決,為學生提供相互學習的機會,創設相互研討的課堂環境.

  通項公式的教學設計示例

  教學目標 

  1.通過教與學的互動,使學生加深對通項公式的認識,能參與編擬一些簡單的問題,并解決這些問題;

  2.利用通項公式求的項、項數、公差、首項,使學生進一步體會方程思想;

  3.通過參與編題解題,激發學生學習的興趣.

  教學重點,難點

  教學重點是通項公式的認識;教學難點 是對公式的靈活運用.

  教學用具

  實物投影儀,多媒體軟件,電腦.

  教學方法

  研探式.

  教學過程 

  一.復習提問

  前一節課我們學習了的概念、表示法,請同學們回憶的定義,其表示法都有哪些?

  的概念是從相鄰兩項的關系加以定義的,這個關系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進一步的理解與應用.

  二.主體設計

  通項公式 反映了項 與項數 之間的函數關系,當的首項與公差確定后,數列的每一項便確定了,可以求指定的項(即已知 求 ).找學生試舉一例如:“已知 中,首項 ,公差 ,求 .”這是通項公式的簡單應用,由學生解答后,要求每個學生出一些運用通項公式的題目,包括正用、反用與變用,簡單、復雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

  1.方程思想的運用

  (1)已知 中,首項 ,公差 ,則-397是該數列的第______項.

  (2)已知 中,首項 , 則公差

  (3)已知 中,公差 , 則首項

  這一類問題先由學生解決,之后教師點評,四個量 , 在一個等式中,運用方程的思想方法,已知其中三個量的值,可以求得第四個量.

  2.基本量方法的使用

  (1)已知 中, ,求 的值.

  (2)已知 中, , 求 .

  若學生的題目只有這兩種類型,教師可以小結(最好請出題者、解題者概括):因為已知條件可以化為關于 和 的二元方程組,所以這些是確定的,由 和 寫出通項公式,便可歸結為前一類問題.解決這類問題只需把兩個條件(等式)化為關于 和 的二元方程組,以求得 和 , 和 稱作基本量.

  教師提出新的問題,已知的一個條件(等式),能否確定一個?學生回答后,教師再啟發,由這一個條件可得到關于 和 的二元方程,這是一個 和 的制約關系,從這個關系可以得到什么結論?舉例說明(例題可由學生或教師給出,視具體情況而定).

  如:已知 中, …

  由條件可得 即 ,可知 ,這是比較顯然的,與之相關的還能有什么結論?若學生答不出可提示,一定得某一項的值么?能否與兩項有關?多項有關?由學生發現規律,完善問題

  (3)已知 中, 求 ; ; ; ;….

  類似的還有

  (4)已知 中, 求 的值.

  以上屬于對數列的項進行定量的研究,有無定性的判斷?引出

  3.研究的單調性

  ,考察 隨項數 的變化規律.著重考慮 的情況. 此時 是 的一次函數,其單調性取決于 的符號,由學生敘述結果.這個結果與考察相鄰兩項的差所得結果是一致的.

  4.研究項的符號

  這是為研究前 項和的最值所做的準備工作.可配備的題目如

  (1)已知數列 的通項公式為 ,問數列從第幾項開始小于0?

  (2) 從第________項起以后每項均為負數.

  三.小結

  1. 用方程思想認識通項公式;

  2. 用函數思想解決問題.

  四.板書設計 

  通項公式  1. 方程思想的運用

  2. 基本量方法的使用

  3. 研究的單調性

  4. 研究項的符號

等差數列 篇9

  一、教材分析

  數列是刻畫離散現象的函數,是一種重要的屬性模型。人們往往通過離散現象認識連續現象,因此就有必要研究數列。

  高中數列研究的主要對象是等差、等比兩個基本數列。本節課的教學內容是等差數列前n項和公式的推導及其簡單應用。

  在推導等差數列前n項和公式的過程中,采用了:

  1、從特殊到一般的研究方法;

  2、倒敘相加求和。不僅得出來等差數列前n項和公式,而且對以后推導等比數列前n項和公式有一定的啟發,也是一種常用的數學思想方法。

  等差數列的前n項和是學習極限、微積分的基礎,與數學課程的其他內容(函數、三角、不等式等)有著密切的聯系。

  二、目標分析

  (一)教學目標

  1、知識與技能

  掌握等差數列的前n項和公式,能較熟練應用等差數列的前n項和公式求和。

  2、過程與方法

  經歷公式的推導過程,體會數形結合的數學思想,體驗從特殊到一般的研究方法,學會觀察、歸納、反思。

  3、情感、態度與價值觀

  獲得發現的成就感,逐步養成科學嚴謹的學習態度,提高代數推理的能力。

  (二)教學重點、難點

  1、重點:等差數列的前n項和公式。

  2、難點:獲得等差數列的前n項和公式推導的思路。

  三、教法學法分析

  (一)教法

  教學過程分為問題呈現階段、探索與發現階段、應用知識階段。

  探索與發現公式推導的思路是教學的重點。如果直接介紹“倒敘相加”求和,無疑就像波利亞所說的“帽子里跳出來的兔子”。所以在教學中采用以問題驅動、層層鋪墊,從特殊到一般啟發學生獲得公式的推導方法。

  應用公式也是教學的重點。為了讓學生較熟練掌握公式,可采用設計變式題的教學手段,通過“選擇公式”,“變用公式”,“知三求二”三個層次來促進學生新的認知結構的形成。

  (二)學法

  建構主義學習理論認為,學習是學生積極主動地建構知識的過程,學習應該與學生熟悉的背景相聯系。在教學中,讓學生在問題情境中,經歷知識的形成和發展,通過觀察、操作、歸納、探索、交流、反思參與學習,認識和理解數學知識,學會學習,發展能力。

  四、教學過程分析

  (一)教學過程設計

  1、問題呈現階段

  泰姬陵坐落于印度古都阿格,是世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成共有100層。你知道這個圖案一共花了多少寶石嗎?

  設計意圖:

  (1)源于歷史,富有人文氣息。

  (2)承上啟下,探討高斯算法。

  2、探究發現階段

  (1)學生敘述高斯首尾配對的方法(學生對高斯的算法是熟悉的,知道采用首尾配對的方法來求和,但是他們對這種方法的認識可能處于模仿、記憶的階段。)

  (2)為了促進學生對這種算法的進一步理解,設計了下面的問題。

  問題1:圖案中,第1層到第21層共有多少顆寶石?(這是奇數個項和的問題,不能簡單模仿偶數個項求和的方法,需要把中間項11看成是首、尾兩項1和21的等差中項。

  通過前后比較得出認識:高斯“首尾配對”的算法還得分奇數、偶數個項的情況求和。

  (3)進而提出有無簡單的方法。

  借助幾何圖形的直觀性,引導學生使用熟悉的幾何方法:把“全等三角形”倒置,與原圖補成平行四邊形。

  獲得算法:S21=

  設計意圖:

  幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學習和理解數學,是數學學習中的重要方面,只有做到了直觀上的理解,才是真正的理解。因此在教學中,要鼓勵學生借助幾何直觀進行思考,揭示研究對象的性質和關系,從而滲透了數形結合的數學思想。

  問題2:求1到n的正整數之和。即Sn=1+2+3+…+n

  ∵Sn=n+(n—1)+(n—2)+…+1

  ∴2Sn=(n+1)+(n+1)+…。+(n+1)

  Sn=(從求確定的前n個正整數之和到求一般項數的前n個正整數之和,旨在讓學生體驗“倒敘相加求和”這一算法的合理性,從心理上完成對“首尾配對求和”算法的改進)

  由于前面的鋪墊,學生容易得出如下過程:

  ∵Sn=an+an—1+an—2+…a1,

  ∴Sn=。

  圖形直觀

  等差數列的性質(如果m+n=p+q,那么am+an=ap+aq。)

  設計意圖:

  一言以蔽之,數學教學應努力做到:以簡馭繁,平實近人,退樸歸真,循循善誘,引人入勝。

  3、公式應用階段

  (1)選用公式

  公式1Sn=;

  公式2Sn=na1+。

  (2)變用公式

  (3)知三求二

  例1

  某長跑運動員7天里每天的訓練量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。這位長跑運動員7天共跑了多少米?(本例提供了許多數據信息,學生可以從首項、尾項、項數出發,使用公式1,也可以從首項、公差、項數出發,使用公式2求和。達到學生熟悉公式的要素與結構的教學目的。

  通過兩種方法的比較,引導學生應該根據信息選擇適當的公式,以便于計算。)

  例2

  等差數列—10,—6,—2,2,…的前多少項和為54?(本例已知首項,前n項和、并且可以求出公差,利用公式2求項數。

  事實上,在兩個求和公式中包含四個元素,從方程的角度,知三必能求余一。)

  變式練習:在等差數列{an}中,a1=20,an=54,Sn=999,求n。

  知三求二:

  例3

  在等差數列{an}中,已知d=20,n=37,Sn=629,求a1及an。(本例是使用等差數列的求和公式和通項公式求未知元。

  事實上,在求和公式、通項公式中共有首項、公差、項數、尾項、前n項和五個元素,如果已知其中三個,連列方程組,就可以求出其余兩個。)

  4、當堂訓練,鞏固深化。

  通過學生的主體性參與,使學生深刻體會到本節課的主要內容和思想方法,從而實現對知識的再次深化。

  采用課后習題1,2,3。

  5、小結歸納,回顧反思。

  小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。

  (1)課堂小結

  ①、回顧從特殊到一般的研究方法;

  ②、體會等差數列的基本元素的表示方法,倒敘相加的算法,以及數形結合的數學思想。

  ③、掌握等差數列的兩個球和公式及簡單應用

  (2)反思

  我設計了三個問題

  ①、通過本節課的學習,你學到了哪些知識?

  ②、通過本節課的學習,你最大的體驗是什么?

  ③、通過本節課的學習,你掌握了哪些技能?

  (二)作業設計

  作業分為必做題和選做題,必做題是對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生的自主發展、合作探究的學習氛圍的形成。

  我設計了以下作業:

  1、必做題:課本p118,練習1,2,3;

  習題3.3第2題(3,4)。

  2、選做題:

  在等差數列中,

  (1)已知a2+a5+a12+a15=36,求是S16。

  (2)已知a6=20,求s11。

  (三)板書設計

  板書要基本體現課堂的內容和方法,體現課堂進程,能簡明扼要反映知識結構及其相互關系:能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。

  五、評價分析

  學生學習的結果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對本節是否有一個完整的集訓,并進行及時的調整和補充。

  以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。

等差數列 篇10

  一、下面先說說教材

  1、教材的地位和作用

  中職數學是中等職業學校各類專業學生必修的主要文化基礎課,學好這門課程對提高學生數學素養具有十分重要的意義。數列這一章是中職數學的重要內容之一。它不僅是函數知識的延伸,而且還有著非常廣泛的實際應用;同時數列還是培養學生數學思維能力的良好題材。

  《等差數列的前n項和》是本章的第二節,它為后繼學習提供了知識基礎,對提高學生分析、猜想、概括、歸納的能力有著重要的作用。

  《等差數列》作為《數列》這一章中兩個最重要的數列之一,具有承上啟下的作用,它的研究和解決集中體現了研究《數列》問題的思想和方法。學習《等差數列的前n項和》對提高學生分析、猜想、概括、歸納的能力有著重要的作用。

  2、教學目標根據教學大綱的要求和教學內容的結構特征,并結合學生學習的實際情況,我將本節課的教學目標確定為以下三個方面

  知識目標:掌握等差數列的前n項和公式

  能力目標:1、培養學生觀察、歸納、類比、聯想等發現規律的一般方法。

  2、提高學生分析問題和解決問題的能力

  情感目標:1、培養學生主動探索的精神和良好的學習習慣

  2、讓學生在問題中感受學習的樂趣;

  3、教學重點和難點。根據本節課的內容以及學生已掌握的知識情況我將

  教學重點確定為:等差數列的前n項和公式及應用

  教學難點確定為:應用等差數列解決有關問題

  二、說教法學法

  教法教學有法但教無定法,教學方法要與學生學習的實際情況相結合。

  中職學生的生源質量逐年下降,大部分中職生基礎薄弱、理解接受能力較差,大多數學生不愛學習,不會學習。學生認為數學難,枯燥理解不了。對數學學習提不起興趣,因此在教學中我注重激發學生學習的興趣。本節課通過具體的實例引入,采用了問題、類比、發現、歸納的探究式教學方法。引導學生積極主動的去學習。在課堂教學中強調以學生為主體,注重精講多練。同時也注重學生非智力因素的培養,增強學生的自信心和成就感。為學習營造寬松和諧的氛圍。另外在教學中使用多媒體教學手段等,提高教學質量和教學效果。

  學法我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。倡導學生主動參與、樂于探究,培養學生發現問題、分析問題和解決問題的能力。根據學生的認知水平,我設計了:

  ①創設情境—引入問題

  ②分析歸納—解決問題

  ③例題研究—運用新知

  ④分組訓練—鞏固新知

  ⑤總結歸納—提高認識

  ⑥課后作業—自主探究

  六個層次的學法,它們環環相扣,層層深入,從而順利完成教學目標。

  接下來,我再具體談一談這堂課的教學過程。

  三、說教學過程

  (一)創設情境——引入問題教學設想

  我經常在想:長期以來,我們的學生為什么對數學不感興趣,甚至害怕數學,其中一個重要因素就是數學離學生的生活實際太遠了。事實上,數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。

  由生活中的實例一招聘信息引入:A公司月薪20__元;B公司第一個月800元,以后逐月遞加200元。你愿意到哪家公司上班?為什么?在A、B公司一年各共領多少錢?五年呢?以此來激發學生的學習興趣。再給學生講數學家高斯的故事

  1+2+3+…+100=

  同學們,如果你是小高斯,你會怎么向老師解釋算法呢?

  (二)分析歸納——解決問題教學設想

  由高斯的解題過程:

  S= 1+2+3+…+100

  S= 100+99+98+…+1

  2S=(100+1)×100

  S=(100+1)100/2=5050

  讓學生在在教師的啟發引導下,由被動地聽講變為主動參與,敢于發表自己獨特的見解,并學會傾聽、尊重他人的意見。教師引導學生概括總結出本課新的知識點。

  1、等差數列前n項求和公式

  類似m+n=s+t am+an=as+at m,n,s,t∈N+

  等差求和

  倒排相加

  另有

  即(2)——類似梯形面積公式便于記憶

  進而讓學生解決課前提出的問題

  一年在A公司12×20__

  在B公司

  800+900+1000+…1900

  五年在A公司20__×12×5

  在B公司

  800+900+1000+…+6700

  ——讓學生利用剛學的知識解決當前的問題,讓學生明白學以致用。

  (三)例題研究——運用新知教學設想

  通過例題,使學生加深對知識的理解,從而達到掌握、運用知識的效果

  例1、(1)求正奇數前100項之和;

  (2)求第101個正奇數到第150個正奇數之和;

  (3)等差數列的通項公式為an=100-3n,求其前65項之和;

  (4)在等差數列{an}中,已知a1=3,,求S10

  例2、某長跑運動員7天每天的訓練量(單位:m)分別是7500,8000,8500,9000,9500,10000,10500,他在7天內共跑了多少米?

  例3、設等差數列{an}的公差d=,前n項之和Sn=。求a1及n

  課堂上讓學生用兩種公式解題,有利于提高思維的靈活性,通過板演調動學生的積極性,也掌握本節課的重點和難點。

  (四)分組訓練—鞏固新知

  教學設想,例題過后,我特地設計了一組檢測題,

  1、等差數列求和公式Sn=

  2、等差數列{an}中,(1)a1=2,d=-1則Sn=

  3、2c+4c+6c+…+2nc=

  4、一堆圓木,每層總比上一層多一根,頂層4根,最底層21根,這堆木料有多少根?

  5、一只掛鐘,遇整點就敲響,鐘響的次數是該點的時間數,從1點到12點共響幾次?

  通過游戲比賽的形式,活躍課堂氣氛,提高學生的學習興趣。來鞏固新知識。

  (五)總結歸納——提高認識教學設想

  讓學生通過所學內容的小結,對知識的發生發展有一個清晰的線索,把課堂所學知識構建起新的知識體系。同時養成良好的學習習慣。

  (六)課后作業自主探究

  教學設想

  學生經過以上五個環節的學習,已經初步掌握了等差數列的前n項的求和,并解決了一些實際問題。

  根據學生在課堂上知識掌握的情況有針對性布置課后作業。提高學生應用知識的能力。

  四、說板書設計

  我將這節課的板書設計為三列,一列為本節課的基本知識點,一列為例題,一列為講解。條理清晰,一目了然。我認為板書設計在課堂教學中也很重要,好的板書就是一份微型教案,向學生展現了所學知識的框架,突出重點難點,清晰直觀地將授課內容傳遞給學生,便于學生理解掌握。

  五、說教學反思

  根據課堂教學情況,課后及時總結,不斷改進,精益求精,努力提高課堂教學效果。

  結束:以上是我說課的內容,不當之處希望各位評委老師提出寶貴意見。

等差數列 篇11

  教學目標 

  1.掌握等差數列前 項和的公式,并能運用公式解決簡單的問題.

  (1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;

  (2)用方程思想認識等差數列前 項和的公式,利用公式求 ;等差數列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;

  (3)會利用等差數列通項公式與前 項和的公式研究 的最值.

  2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規律,初步形成認識問題,解決問題的一般思路和方法.

  3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發展學生的思維水平.

  4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.

  教學建議

  (1)知識結構

  本節內容是等差數列前 項和公式的推導和應用,首先通過具體的例子給出了求等差數列前 項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.

  (2)重點、難點分析

  教學重點是等差數列前 項和公式的推導和應用,難點是公式推導的思路.

  推導過程的展示體現了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前 項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現了方程(組)思想.

  高斯算法表現了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.

  (3)教法建議

  ①本節內容分為兩課時,一節為公式推導及簡單應用,一節側重于通項公式與前 項和公式綜合運用.

  ②前 項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.

  ③強調從特殊到一般,再從一般到特殊的思考方法與研究方法.

  ④補充等差數列前 項和的最大值、最小值問題.

  ⑤用梯形面積公式記憶等差數列前 項和公式.

  等差數列的前項和公式教學設計示例

  教學目標 

  1.通過教學使學生理解等差數列的前 項和公式的推導過程,并能用公式解決簡單的問題.

  2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.

  教學重點,難點

  教學重點是等差數列的前 項和公式的推導和應用,難點是獲得推導公式的思路.

  教學用具

  實物投影儀,多媒體軟件,電腦.

  教學方法

  講授法.

  教學過程 

  一.新課引入

  提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)

  問題就是(板書)“ ”

  這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.

  我們希望求一般的等差數列的和,高斯算法對我們有何啟發?

  二.講解新課

  (板書)等差數列前 項和公式

  1.公式推導(板書)

  問題(幻燈片):設等差數列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數列求和的指導意義.

  思路一:運用基本量思想,將各項用 和 表示,得

  ,有以下等式

  ,問題是一共有多少個 ,似乎與 的奇偶有關.這個思路似乎進行不下去了.

  思路二:

  上面的等式其實就是 ,為回避個數問題,做一個改寫 , ,兩式左右分別相加,得

  ,

  于是有: .這就是倒序相加法.

  思路三:受思路二的啟發,重新調整思路一,可得 ,于是 .

  于是得到了兩個公式(投影片): 和 .

  2.公式記憶

  用梯形面積公式記憶等差數列前 項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前 項和的兩個公式.

  3.公式的應用

  公式中含有四個量,運用方程的思想,知三求一.

  例1.求和:(1) ;

  (2) (結果用 表示)

  解題的關鍵是數清項數,小結數項數的方法.

  例2.等差數列 中前多少項的和是9900?

  本題實質是反用公式,解一個關于 的一元二次函數,注意得到的項數 必須是正整數.

  三.小結

  1.推導等差數列前 項和公式的思路;

  2.公式的應用中的數學思想.

  四.板書設計 

等差數列 篇12

  教學目標  1.熟練運用等差、等比數列的概念、通項公式、前n項和式以及有關性質,分析和解決等差、等比數列的綜合問題.  2.突出方程思想的應用,引導學生選擇簡捷合理的運算途徑,提高運算速度和運算能力.3.用類比思想加深對等差數列與等比數列概念和性質的理解.教學重點與難點  1.用方程的觀點認識等差、等比數列的基礎知識,從本質上掌握公式.  2.等差數列與等比數列的綜合應用.例1已知兩個等差數列5,8,11,…和3,7,11…都有100項,問它們有多少公共項.例2 已知數列{an}的前n 項和 ,求數列{|an|}的前n項和tn.例3已知公差不為零的等差數列{an}和等比數例{bn}中,a1=b1=1,a2=b2,a8=b3,試問:是否存在常數a,b,使得對于一切自然數n,都有an=logabn+b成立.若存在,求出a,b的值,若不存在,請說明理由.  例4已知數列{an}是公差不為零的等差數列,數列{akn}是公比為q的等比數列,且k1=1,k2=5,k3=17,求k1+k2+k3+…+kn的值.  例5、 已知函數f(x)=2x-2-x ,數列{an}滿足f( )= -2n (1)求{an}的通項公式。 (2)證明{an}是遞減數列。 例6、在數列{an}中,an>0,  = an+1 (n n) 求sn和an的表達式。 例7.已知數列{an}的通項公式為an= .求證:對于任意的正整數n,均有a2n─1,a2n,a2n+1成等比數列,而a2n,a2n+1,a2n+2成等差數列。例8.項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項及項數。作業  1  公差不為零的等差數列的第2,第3,第6項依次成等比數列,則公比是(    ).  (a)1     (b)2       (c)3       (d)4  2  若等差數列{an}的首項為a1=1,等比數列{bn},把這兩個數列對應項相加所得的新數列{an+bn}的前三項為3,12,33,則{an}的公差為{bn}的公比之和為(   ).  (a)-5     (b)7       (c)9       (d)14  3 已知等差數列{an}的公差d≠0,且a1,a3,a9成等比數列,則 的值是 .  4   在等差數列{an}中,a1,a4,a25依次成等比數列,且a1+a4+a25=114,求成等比數列的這三個數.  5  設數列{an}是首項為1的等差數列,數列{bn}是首項為1的等比數列,又cn=an-bn(n∈n+),已知 試求數列{cn}的通項公式與前n項和公式.

等差數列(精選12篇) 相關內容:
  • 等差數列

    教學目標 1.理解等差數列的概念,把握等差數列的通項公式,并能運用通項公式解決簡單的問題. (1)了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判定一個數列是等差數列,了解等差中項的概念; (2)正確熟悉使用等差數列的各種表...

  • 3.1 等差數列(第一課時)

    教學目的:1.明確等差數列的定義,掌握等差數列的通項公式; 2.會解決知道 中的三個,求另外一個的問題 教學重點:等差數列的概念,等差數列的通項公式 教學難點:等差數列的性質 教學過程: 一、復習引入:(課件第一頁) 二、講解新課:...

  • 等差數列

    教學目標 1.理解的概念,掌握的通項公式,并能運用通項公式解決簡單的問題. (1)了解公差的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等差中項的概念; (2)正確認識使用的各種表示法,能靈活運用通項公式求的首...

  • 等差數列

    教學目標 1.理解的概念,掌握的通項公式,并能運用通項公式解決簡單的問題. (1)了解公差的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等差中項的概念; (2)正確認識使用的各種表示法,能靈活運用通項公式求的首...

  • 等差數列

    教學目標 1.理解的概念,掌握的通項公式,并能運用通項公式解決簡單的問題. (1)了解公差的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等差中項的概念; (2)正確認識使用的各種表示法,能靈活運用通項公式求的首...

  • 數學等差數列教案(通用7篇)

    【教學目標】1.知識與技能(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:(2)賬務等差數列的通項公式及其推導過程:(3)會應用等差數列通項公式解決簡單問題。...

  • 等差數列的說課稿(精選6篇)

    一、教材分析數列是刻畫離散現象的函數,是一種重要的屬性模型。人們往往通過離散現象認識連續現象,因此就有必要研究數列。高中數列研究的主要對象是等差、等比兩個基本數列。本節課的教學內容是等差數列前n項和公式的推導及其簡單應用。...

  • 等差數列與等比數列綜合問題(通用2篇)

    教學目標 1.熟練運用等差、等比數列的概念、通項公式、前n項和式以及有關性質,分析和解決等差、等比數列的綜合問題. 2.突出方程思想的應用,引導學生選擇簡捷合理的運算途徑,提高運算速度和運算能力.3.用類比思想加深對等差數列與等比數...

  • 《等差數列》說課稿(通用5篇)

    以下是初中數學《等差數列》的說課稿范文,僅供參考。希望大家喜歡!《等差數列》說課稿各位評委老師好,我是4號考生,我今天說課的題目是《等差數列》,我從教材分析,學情教法分析,學法分析,教學過程四方面對本節課的內容加以說明。...

  • 人教版高一數學《等差數列》優秀說課稿模板(精選4篇)

    一、教材分析1、教材的地位和作用:數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。...

  • 等差數列的前n項和(精選7篇)

    教學目標1.掌握等差數列前 項和的公式,并能運用公式解決簡單的問題.(1)了解等差數列前 項和的定義,了解逆項相加的原理,理解等差數列前 項和公式推導的過程,記憶公式的兩種形式;(2)用方程思想認識等差數列前 項和的公式,利用公式...

  • 《等差數列》說課稿

    以下是初中數學《等差數列》的說課稿范文,僅供參考。希望大家喜歡!《等差數列》說課稿各位評委老師好,我是4號考生,我今天說課的題目是《等差數列》,我從教材分析,學情教法分析,學法分析,教學過程四方面對本節課的內容加以說明。...

  • 等差數列(第一課時)說課稿

    以下是初中數學等差數列(第一課時)說課稿范文,僅供參考。希望大家喜歡!等差數列(第一課時)說課稿各位評委老師好,我是4號考生,我今天說課的題目是《等差數列》,我從教材分析,學情教法分析,學法分析,教學過程四方面對本節課的內容加...

  • 高一數學《等差數列》說課稿模板

    下面是第一范文網小編整理的高一數學《等差數列》說課稿模板,希望對大家有所幫助。一、教材分析1、教材的地位和作用:數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。...

  • 人教版高一數學《等差數列》優秀說課稿模板

    一、教材分析1、教材的地位和作用:數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。...

  • 高一數學教案
主站蜘蛛池模板: 绝顶潮喷绝叫在线观看 | 国产福利一区二区三区在线播放 | 精品欧美国产一区二区三区 | 久久美女高清视频 | 农村妇女野外aaaaa视频对白 | 欧美国产在线不卡 | 日韩三级在线 | 国产日韩欧美亚欧在线 | 国产一区二区影视 | 人人澡人人妻人人爽人人蜜桃 | 久久精品国产99精品亚洲 | 欧美一性一交一乱 | 息与子五十路中文字幕 | 日韩特黄一级片 | 色综合激情一区二区三区 | 3bmm在线观看视频免费 | 国产精品乱人伦 | 亚洲美女性视频 | 67PAO国产成视频永久免费 | 91免费福利在线 | 青青爽无码视频在线观看 | 欧美一区二区日韩 | 国产精品无码久久AⅤ人妖 综合精品视频 | 久久人爽人人爽人人片AV | 亚洲v国产v天堂a无码二区久久 | 精品久草 | 久热超碰 | 成人免费A级毛片天天看 | 99精品国产99久久久久久福利 | 欧美日韩精品久久久 | 男女久久久国产一区二区三区 | 蜜桃传媒视频麻豆第一区免费观看 | 成人精品一区二区三区 | 日本春药精油按摩系列 | 热久热久 | 国产国拍亚洲精品MV在线观看" | 黄页在线观看视频 | brazzers精品成人一区 | 国产不卡精品 | 国产成人综合在线视频 | 国产精品99久久久久的智能播放 |