3.1 等差數列(第一課時)
教學目的:1.明確等差數列的定義,掌握等差數列的通項公式; 2.會解決知道 中的三個,求另外一個的問題 教學重點:等差數列的概念,等差數列的通項公式 教學難點:等差數列的性質 教學過程: 一、復習引入:(課件第一頁) 二、講解新課: 1.等差數列:一般地,如果一個數列從第二項起,每一項與它前一項的 差等于同一個常數,這個數列就叫做等差數列,這個常數就叫做等差數列的公差(常用字母“d”表示)。(課件第二頁) ⑴.公差d一定是由后項減前項所得,而不能用前項減后項來求; ⑵.對于數列{ },若 - =d (與n無關的數或字母),n≥2,n∈n ,則此數列是等差數列,d 為公差。 2.等差數列的通項公式: 【或 】等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列 的首項是 ,公差是d,則據其定義可得: 即: 即: 即: …… 由此歸納等差數列的通項公式可得: (課件第二頁) 第二通項公式 (課件第二頁) 三、例題講解 例1 ⑴求等差數列8,5,2…的第20項(課本p111) ⑵ -401是不是等差數列-5,-9,-13…的項?如果是,是第幾項? 例2 在等差數列 中,已知 , ,求 , , 例3將一個等差數列的通項公式輸入計算器數列 中,設數列的第s項和第t項分別為 和 ,計算 的值,你能發現什么結論?并證明你的結論。 小結:①這就是第二通項公式的變形,②幾何特征,直線的斜率 例4 梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數列,計算中間各級的寬度。(課本p112例3) 例5 已知數列{ }的通項公式 ,其中 、 是常數,那么這個數列是否一定是等差數列?若是,首項與公差分別是什么?(課本p113例4) 分析:由等差數列的定義,要判定 是不是等差數列,只要看 (n≥2)是不是一個與n無關的常數。 注:①若p=0,則{ }是公差為0的等差數列,即為常數列q,q,q,… ②若p≠0, 則{ }是關于n的一次式,從圖象上看,表示數列的各點均在一次函數y=px+q的圖象上,一次項的系數是公差,直線在y軸上的截距為q. ③數列{ }為等差數列的充要條件是其通項 =pn+q (p、q是常數)。稱其為第3通項公式④判斷數列是否是等差數列的方法是否滿足3個通項公式中的一個。 例6.成等差數列的四個數的和為26,第二項與第三項之積為40,求這四個數.四、練習: 1.(1)求等差數列3,7,11,……的第4項與第10項. (2)求等差數列10,8,6,……的第20項. (3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. (4)-20是不是等差數列0,-3 ,-7,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數列{ }中,(1)已知 =10, =19,求 與d; 五、課后作業:習題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.