中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁(yè) > 教案下載 > 數(shù)學(xué)教案 > 高中數(shù)學(xué)教案 > 高一數(shù)學(xué)教案 > 3.4 等比數(shù)列(通用16篇)

3.4 等比數(shù)列

發(fā)布時(shí)間:2022-11-06

3.4 等比數(shù)列(通用16篇)

3.4 等比數(shù)列 篇1

  教學(xué)目的:1.靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式. 2.熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否成等比數(shù)列的方法。 教學(xué)重點(diǎn):等比中項(xiàng)的應(yīng)用及等比數(shù)列性質(zhì)的應(yīng)用. 教學(xué)難點(diǎn):靈活應(yīng)用等比數(shù)列定義、通項(xiàng)公式、性質(zhì)解決一些相關(guān)問(wèn)題 教學(xué)過(guò)程: 一、復(fù)習(xí):等比數(shù)列的定義、通項(xiàng)公式、等比中項(xiàng)    二、講解新課:   1.等比數(shù)列的性質(zhì):若m+n=p+q,則 2.判斷等比數(shù)列的方法:定義法,中項(xiàng)法,通項(xiàng)公式法 3.等比數(shù)列的增減性:當(dāng)q>1, >0或0<q<1, <0時(shí), { }是遞增數(shù)列;當(dāng)q>1, <0,或0<q<1, >0時(shí), { }是遞減數(shù)列;當(dāng)q=1時(shí), { }是常數(shù)列;當(dāng)q<0時(shí), { }是擺動(dòng)數(shù)列; 三、例題講解 例1 已知:b是a與c的等比中項(xiàng),且a、b、c同號(hào), 求證:  也成等比數(shù)列。 證明:由題設(shè):b2=ac   得:   ∴  也成等比數(shù)列 例2 已知等比數(shù)列 . 例3  a≠c,三數(shù)a, 1, c成等差數(shù)列,a , 1, c 成等比數(shù)列,求 的值.解: ∵a, 1, c成等差數(shù)列, ∴ a+c=2, 又a , 1, c 成等比數(shù)列, ∴a  c =1, 有ac=1或ac=-1, 當(dāng)ac=1時(shí), 由a+c=2得a=1, c=1,與a≠c矛盾,         ∴ ac=-1,   a + c =(a+c) -2ac=6,          ∴  = . 例4 已知無(wú)窮數(shù)列 ,       求證:(1)這個(gè)數(shù)列成等比數(shù)列            (2)這個(gè)數(shù)列中的任一項(xiàng)是它后面第五項(xiàng)的 ,            (3)這個(gè)數(shù)列的任意兩項(xiàng)的積仍在這個(gè)數(shù)列中。 證:(1) (常數(shù))∴該數(shù)列成等比數(shù)列。         (2) ,即: 。          (3) ,∵ ,∴ 。             ∴ 且 , ∴ ,(第 項(xiàng))。 例5 設(shè) 均為非零實(shí)數(shù), ,     求證: 成等比數(shù)列且公比為 。 證一:關(guān)于 的二次方程 有實(shí)根,   ∴ ,∴   則必有: ,即 ,∴ 成等比數(shù)列   設(shè)公比為 ,則 , 代入     ∵ ,即 ,即 。 證二:∵       ∴       ∴ ,∴ ,且       ∵ 非零,∴ 。 四、課后作業(yè):課本p125習(xí)題3.4   10(2),  11,《精講精練》p126 智能達(dá)標(biāo)訓(xùn)練.

3.4 等比數(shù)列 篇2

  教學(xué)目標(biāo) 

  1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

 。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

 。2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

 。3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題.

  2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

  3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

  (2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn) 在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.

 、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).

  ②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

  ③對(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

  教學(xué)建議

  (1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.

  (2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義.

  (3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

  (4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法. 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

 。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

 。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

  教學(xué)設(shè)計(jì)示例

  課題:的概念

  教學(xué)目標(biāo) 

  1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

  2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

  3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

  教學(xué)用具

  投影儀,多媒體軟件,電腦.

  教學(xué)方法

  討論、談話法.

  教學(xué)過(guò)程 

  一、提出問(wèn)題

  給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)

 、伲2,1,4,7,10,13,16,19,…

 、8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1, , ,…

  ⑤31,29,27,25,23,21,19,…

 、1,-1,1,-1,1,-1,1,-1,…

 、1,-10,100,-1000,10000,-100000,…

 、0,0,0,0,0,0,0,…

  由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).

  二、講解新課

  請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開(kāi)始有一個(gè)變形蟲,經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

 。ò鍟

  1.的定義(板書)

  根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

  請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如 的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是,當(dāng) 時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):

  2.對(duì)定義的認(rèn)識(shí)(板書)

 。1)的首項(xiàng)不為0;

 。2)的每一項(xiàng)都不為0,即 ;

  問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

  (3)公比不為0.

  用數(shù)學(xué)式子表示的定義.

  是 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫為 是 ?為什么不能?

  式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

  3.的通項(xiàng)公式(板書)

  問(wèn)題:用 和 表示第 項(xiàng) .

  ①不完全歸納法

  .

 、诏B乘法

  ,… , ,這 個(gè)式子相乘得 ,所以 .

 。ò鍟1)的通項(xiàng)公式

  得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

  (板書)(2)對(duì)公式的認(rèn)識(shí)

  由學(xué)生來(lái)說(shuō),最后歸結(jié):

 、俸瘮(shù)觀點(diǎn);

 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

  這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

  如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

  三、小結(jié)

  1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

  2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

  3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

  四、作業(yè) (略)

  五、板書設(shè)計(jì) 

  三.                                                   

  1.的定義

  2.對(duì)定義的認(rèn)識(shí)

  3.的通項(xiàng)公式

 。1)公式

 。2)對(duì)公式的認(rèn)識(shí)

  探究活動(dòng)

  將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍热缂埡?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是 粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

3.4 等比數(shù)列 篇3

  教學(xué)目標(biāo) 

  1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

 。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

  (2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

 。3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題.

  2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

  3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn) 在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.

  ①與等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).

 、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

 、蹖(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

  教學(xué)建議

 。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.

  (2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義.

 。3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

 。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法. 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

 。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

  (6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

  教學(xué)設(shè)計(jì)示例

  課題:的概念

  教學(xué)目標(biāo) 

  1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

  2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

  3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

  教學(xué)用具

  投影儀,多媒體軟件,電腦.

  教學(xué)方法

  討論、談話法.

  教學(xué)過(guò)程 

  一、提出問(wèn)題

  給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)

 、伲2,1,4,7,10,13,16,19,…

 、8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

 、243,81,27,9,3,1, , ,…

 、31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

 、1,-10,100,-1000,10000,-100000,…

  ⑧0,0,0,0,0,0,0,…

  由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).

  二、講解新課

  請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開(kāi)始有一個(gè)變形蟲,經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

 。ò鍟

  1.的定義(板書)

  根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

  請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如 的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是,當(dāng) 時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):

  2.對(duì)定義的認(rèn)識(shí)(板書)

  (1)的首項(xiàng)不為0;

 。2)的每一項(xiàng)都不為0,即 ;

  問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

  (3)公比不為0.

  用數(shù)學(xué)式子表示的定義.

  是 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫為 是 ?為什么不能?

  式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

  3.的通項(xiàng)公式(板書)

  問(wèn)題:用 和 表示第 項(xiàng) .

 、俨煌耆珰w納法

  .

 、诏B乘法

  ,… , ,這 個(gè)式子相乘得 ,所以 .

 。ò鍟1)的通項(xiàng)公式

  得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

  (板書)(2)對(duì)公式的認(rèn)識(shí)

  由學(xué)生來(lái)說(shuō),最后歸結(jié):

  ①函數(shù)觀點(diǎn);

 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

  這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

  如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

  三、小結(jié)

  1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

  2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

  3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

  四、作業(yè) (略)

  五、板書設(shè)計(jì) 

  三.                                                   

  1.的定義

  2.對(duì)定義的認(rèn)識(shí)

  3.的通項(xiàng)公式

  (1)公式

 。2)對(duì)公式的認(rèn)識(shí)

  探究活動(dòng)

  將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍热缂埡?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是 粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

3.4 等比數(shù)列 篇4

  教學(xué)目的:1.掌握等比數(shù)列的定義. 2.理解等比數(shù)列的通項(xiàng)公式及推導(dǎo); 理解等比中項(xiàng)概念.             教學(xué)重點(diǎn):等比數(shù)列的定義及通項(xiàng)公式 教學(xué)難點(diǎn):靈活應(yīng)用定義式及通項(xiàng)公式解決相關(guān)問(wèn)題 教學(xué)過(guò)程: 一、復(fù)習(xí)引入:1.等差數(shù)列的定義: - =d ,(n≥2,n∈n*) 2.等差數(shù)列的通項(xiàng)公式:     3.幾種計(jì)算公差d的方法:d= - = =     4.等差中項(xiàng): 成等差數(shù)列    二、講解新課:   下面我們來(lái)看這樣幾個(gè)數(shù)列,看其又有何共同特點(diǎn)? 1,2,4,8,16,…,263;        ① 5,25,125,625,…;          ② 1,- ,…;            ③ 對(duì)于數(shù)列①, =  ;  =2(n≥2) 對(duì)于數(shù)列②, =   ;   =5(n≥2) 對(duì)于數(shù)列③, = · ; (n≥2) 共同特點(diǎn):從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的比都等于同一個(gè)常數(shù)

  1.等比數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比;公比通常用字母q表示(q≠0),即: { }成等比數(shù)列 =q( ,q≠0) 注意:等比數(shù)列的定義隱含了任一項(xiàng) 2.等比數(shù)列的通項(xiàng)公式1: 由等比數(shù)列的定義,有: ; ; ; … … … … … … … 3.等比數(shù)列的通項(xiàng)公式2: 4.既是等差又是等比數(shù)列的數(shù)列:非零常數(shù)列. 5.等比中項(xiàng):如果在a與b中間插入一個(gè)數(shù)g,使a,g,b成等比數(shù)列,那么稱這個(gè)數(shù)g為a與b的等比中項(xiàng).  即g=± (a,b同號(hào)) a,g,b成等比數(shù)列 g =ab(a·b≠0) 三、例題例1 課本     p123例1,請(qǐng)同學(xué)們認(rèn)真閱讀題目,并自己動(dòng)手解題. 例2 一個(gè)等比數(shù)列的第3項(xiàng)與第4項(xiàng)分別是12與18,求它的第1項(xiàng)與第2項(xiàng).(課本p123例2) 例3  求下列各等比數(shù)列的通項(xiàng)公式: 1.  =-2,  =-8 (答案 ) 2.  =5, 且2 = -3   例4. 求數(shù)列 =5, 且  的通項(xiàng)公式 解:  以上各式相乘得:     例5. 已知{an}、{bn}是項(xiàng)數(shù)相同的等比數(shù)列,求證 是等比數(shù)列.(課本p123 例3) 四、練習(xí): 1.求下面等比數(shù)列的第4項(xiàng)與第5項(xiàng): (1)5,-15,45,……;    (2)1.2,2.4,4.8,……; (3) ,……. 2. 一個(gè)等比數(shù)列的第9項(xiàng)是 ,公比是- ,求它的第1項(xiàng). 五、作業(yè):課本 p 125習(xí)題3.4   1(2)(4),2,  5, 6,7(2),8,  9.

3.4 等比數(shù)列 篇5

  教學(xué)目標(biāo) 

  1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

  (1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;

 。2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

  (3)通過(guò)通項(xiàng)公式認(rèn)識(shí)的性質(zhì),能解決某些實(shí)際問(wèn)題.

  2.通過(guò)對(duì)的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

  3.通過(guò)對(duì)概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)是的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn) 在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.

 、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).

 、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

 、蹖(duì)等差數(shù)列、的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

  教學(xué)建議

 。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.

 。2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括的定義.

 。3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

 。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法. 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

 。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

 。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

  教學(xué)設(shè)計(jì)示例

  課題:的概念

  教學(xué)目標(biāo) 

  1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

  2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

  3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

  教學(xué)用具

  投影儀,多媒體軟件,電腦.

  教學(xué)方法

  討論、談話法.

  教學(xué)過(guò)程 

  一、提出問(wèn)題

  給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)

 、伲2,1,4,7,10,13,16,19,…

 、8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

 、243,81,27,9,3,1, , ,…

  ⑤31,29,27,25,23,21,19,…

 、1,-1,1,-1,1,-1,1,-1,…

 、1,-10,100,-1000,10000,-100000,…

 、0,0,0,0,0,0,0,…

  由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).

  二、講解新課

  請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開(kāi)始有一個(gè)變形蟲,經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

 。ò鍟

  1.的定義(板書)

  根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

  請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如 的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是,當(dāng) 時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):

  2.對(duì)定義的認(rèn)識(shí)(板書)

 。1)的首項(xiàng)不為0;

  (2)的每一項(xiàng)都不為0,即 ;

  問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

 。3)公比不為0.

  用數(shù)學(xué)式子表示的定義.

  是 ①.在這個(gè)式子的寫法上可能會(huì)有一些爭(zhēng)議,如寫成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫為 是 ?為什么不能?

  式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

  3.的通項(xiàng)公式(板書)

  問(wèn)題:用 和 表示第 項(xiàng) .

  ①不完全歸納法

  .

 、诏B乘法

  ,… , ,這 個(gè)式子相乘得 ,所以 .

 。ò鍟1)的通項(xiàng)公式

  得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

 。ò鍟2)對(duì)公式的認(rèn)識(shí)

  由學(xué)生來(lái)說(shuō),最后歸結(jié):

 、俸瘮(shù)觀點(diǎn);

 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

  這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

  如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

  三、小結(jié)

  1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

  2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

  3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

  四、作業(yè) (略)

  五、板書設(shè)計(jì) 

  三.                                                   

  1.的定義

  2.對(duì)定義的認(rèn)識(shí)

  3.的通項(xiàng)公式

  (1)公式

  (2)對(duì)公式的認(rèn)識(shí)

  探究活動(dòng)

  將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍热缂埡?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是 粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

3.4 等比數(shù)列 篇6

  教學(xué)目標(biāo)  1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問(wèn)題.  2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡(jiǎn)捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力.3.用類比思想加深對(duì)等差數(shù)列與等比數(shù)列概念和性質(zhì)的理解.教學(xué)重點(diǎn)與難點(diǎn)  用方程的觀點(diǎn)認(rèn)識(shí)等差、等比數(shù)列的基礎(chǔ)知識(shí),從本質(zhì)上掌握公式.  例題例1 三個(gè)互不相等的實(shí)數(shù)成等差數(shù)列,如果適當(dāng)排列這三個(gè)數(shù)也可以成等比數(shù)列,又知這三個(gè)數(shù)的和為6,求這三個(gè)數(shù)。例2  數(shù)列 中, , , , , ……,求 的值。例3  有四個(gè)數(shù),前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩個(gè)數(shù)之和是21,中間兩個(gè)數(shù)的和是18,求這四個(gè)數(shù).例4  已知數(shù)列 的前 項(xiàng)的和 ,求數(shù)列 前 項(xiàng)的和.例5  是否存在等比數(shù)列 ,其前 項(xiàng)的和 組成的數(shù)列 也是等比數(shù)列?例6  數(shù)列 是首項(xiàng)為0的等差數(shù)列,數(shù)列 是首項(xiàng)為1的等比數(shù)列,設(shè)

  ,數(shù)列 的前三項(xiàng)依次為1,1,2,

 。1)求數(shù)列 、 的通項(xiàng)公式;

  (2)求數(shù)列 的前10項(xiàng)的和。 例7  已知數(shù)列 滿足, , .

  (1)求證:數(shù)列 是等比數(shù)列;

  (2)求 的表達(dá)式和 的表達(dá)式.

  作業(yè):

  1.   已知 同號(hào),則 是 成等比數(shù)列的

 。╝)充分而不必要條件               (b)必要而不充分條件

 。╟)充要條件                       (d)既不充分而也不必要條件

  2.   如果 和 是兩個(gè)等差數(shù)列,其中 ,那么 等于

 。╝)           (b)         (c)3            (d)

  3.   若某等比數(shù)列中,前7項(xiàng)和為48,前14項(xiàng)和為60,則前21項(xiàng)和為

  (a)180         (b)108               (c)75              (d)63

  4.   已知數(shù)列 ,對(duì)所有 ,其前 項(xiàng)的積為 ,求 的值,

  5.   已知 為等差數(shù)列,前10項(xiàng)的和為 ,前100項(xiàng)的和為 ,求前110項(xiàng)的和

  6.   等差數(shù)列 中, , ,依次抽出這個(gè)數(shù)列的第 項(xiàng),組成數(shù)列 ,求數(shù)列 的通項(xiàng)公式和前 項(xiàng)和公式.

  7.   已知數(shù)列 , ,

 。1)求通項(xiàng)公式 ;

  (2)若 ,求數(shù)列 的最小項(xiàng)的值;

 。3)數(shù)列 的前 項(xiàng)和為 ,求數(shù)列 前項(xiàng)的和 .

  8.   三數(shù)成等比數(shù)列,若第二個(gè)數(shù)加4 就成等差數(shù)列,再把這個(gè)等差數(shù)列的第三個(gè)數(shù)加上32又成等比數(shù)列,求這三個(gè)數(shù).

3.4 等比數(shù)列 篇7

  教學(xué)目標(biāo)

  1.把握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

  (1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;

  (2)用方程的思想熟悉等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;

  2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想.

  3.通過(guò)公式推導(dǎo)的教學(xué),對(duì)學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的練習(xí),培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

  (1)知識(shí)結(jié)構(gòu)

  先用錯(cuò)位相減法推出等比數(shù)列前 項(xiàng)和公式,而后運(yùn)用公式解決一些問(wèn)題,并將通項(xiàng)公式與前 項(xiàng)和公式結(jié)合解決問(wèn)題,還要用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

  (2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問(wèn)題中多有涉及,所以對(duì)等比數(shù)列前 項(xiàng)和公式的要求,不單是要記住公式,更重要的是把握推導(dǎo)公式的方法. 等比數(shù)列前 項(xiàng)和公式是分情況討論的,在運(yùn)用中要非凡注重 和 兩種情況.

  教學(xué)建議

  (1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問(wèn)題.

  (2)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證實(shí)結(jié)論.

  (3)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的愛(ài)好.

  (4)編擬例題時(shí)要全面,不要忽略 的情況.

  (5)通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大.

  (6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問(wèn)題.

  教學(xué)設(shè)計(jì)示例

  課題:等比數(shù)列前 項(xiàng)和的公式

  教學(xué)目標(biāo)

  (1)通過(guò)教學(xué)使學(xué)生把握等比數(shù)列前 項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前 項(xiàng)和.

  (2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).

  (3)通過(guò)教學(xué)進(jìn)一步滲透從非凡到一般,再?gòu)囊话愕椒欠驳霓q證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路.

  教學(xué)用具

  幻燈片,課件,電腦.

  教學(xué)方法

  引導(dǎo)發(fā)現(xiàn)法.

  教學(xué)過(guò)程

  一、新課引入:

  (問(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題: (幻燈片)

  二、新課講解:

  記 ,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2,當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對(duì)應(yīng)相等的,作差可以相互抵消.

  (板書)即 , ①

  , ②

 、-①得 即 .

  由此對(duì)于一般的等比數(shù)列,其前 項(xiàng)和 ,如何化簡(jiǎn)?

  (板書)等比數(shù)列前 項(xiàng)和公式

  仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比 ,即

  (板書) ③兩端同乘以 ,得

 、,

 、-④得 ⑤,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注重 的取值)

  當(dāng) 時(shí),由③可得 (不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)

  當(dāng) 時(shí),由⑤得 .

  于是

  反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如 的數(shù)列的和,其中 為等差數(shù)列, 為等比數(shù)列.

  (板書)例題:求和: .

  設(shè) ,其中 為等差數(shù)列, 為等比數(shù)列,公比為 ,利用錯(cuò)位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說(shuō)明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問(wèn)題轉(zhuǎn)化為等比數(shù)列求和的問(wèn)題.

  公式其它應(yīng)用問(wèn)題注重對(duì)公比的分類討論即可.

  三、小結(jié):

  1.等比數(shù)列前 項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;

  2.用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

  四、作業(yè):略 .

  五、板書設(shè)計(jì):

  等比數(shù)列前 項(xiàng)和公式例題

3.4 等比數(shù)列 篇8

  教學(xué)設(shè)計(jì)示例

  課題:等比數(shù)列前 項(xiàng)和的公式

  教學(xué)目標(biāo) 

 。1)通過(guò)教學(xué)使學(xué)生掌握等比數(shù)列前 項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前 項(xiàng)和.

 。2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).

 。3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再?gòu)囊话愕教厥獾霓q證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路.

  教學(xué)用具

  幻燈片,課件,電腦.

  教學(xué)方法

  引導(dǎo)發(fā)現(xiàn)法.

  教學(xué)過(guò)程 

  一、新課引入:

 。▎(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題: (幻燈片)

  二、新課講解:

  記 ,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2,當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對(duì)應(yīng)相等的,作差可以相互抵消.

 。ò鍟┘ ,       ①

  ,      ②

 、冢俚 即 .

  由此對(duì)于一般的等比數(shù)列,其前 項(xiàng)和 ,如何化簡(jiǎn)?

 。ò鍟┑缺葦(shù)列前 項(xiàng)和公式

  仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比 ,即

 。ò鍟 ③兩端同乘以 ,得

  ④,

 、郏艿 ⑤,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意 的取值)

  當(dāng) 時(shí),由③可得 (不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)

  當(dāng) 時(shí),由⑤得 .

  于是

  反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如 的數(shù)列的和,其中 為等差數(shù)列, 為等比數(shù)列.

 。ò鍟├}:求和: .

  設(shè) ,其中 為等差數(shù)列, 為等比數(shù)列,公比為 ,利用錯(cuò)位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說(shuō)明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問(wèn)題轉(zhuǎn)化為等比數(shù)列求和的問(wèn)題.

  公式其它應(yīng)用問(wèn)題注意對(duì)公比的分類討論即可.

  三、小結(jié):

  1.等比數(shù)列前 項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;

  2.用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

  四、作業(yè) :略.

  五、板書設(shè)計(jì) :

  等比數(shù)列前 項(xiàng)和公式 例題

3.4 等比數(shù)列 篇9

  教學(xué)目標(biāo) 

  1.掌握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

 。1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;

 。2)用方程的思想認(rèn)識(shí)等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;

  2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想.

  3.通過(guò)公式推導(dǎo)的教學(xué),對(duì)學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  先用錯(cuò)位相減法推出等比數(shù)列前 項(xiàng)和公式,而后運(yùn)用公式解決一些問(wèn)題,并將通項(xiàng)公式與前 項(xiàng)和公式結(jié)合解決問(wèn)題,還要用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

  (2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問(wèn)題中多有涉及,所以對(duì)等比數(shù)列前 項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法. 等比數(shù)列前 項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意 和 兩種情況.

  教學(xué)建議

  (1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問(wèn)題.

  (2)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論.

  (3)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣.

  (4)編擬例題時(shí)要全面,不要忽略 的情況.

 。5)通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大.

  (6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問(wèn)題.

  教學(xué)設(shè)計(jì)示例

  課題:等比數(shù)列前 項(xiàng)和的公式

  教學(xué)目標(biāo) 

 。1)通過(guò)教學(xué)使學(xué)生掌握等比數(shù)列前 項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前 項(xiàng)和.

 。2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).

  (3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再?gòu)囊话愕教厥獾霓q證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)?strong>學(xué)習(xí)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路.

  教學(xué)用具

  幻燈片,課件,電腦.

  教學(xué)方法

  引導(dǎo)發(fā)現(xiàn)法.

  教學(xué)過(guò)程 

  一、新課引入:

 。▎(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題: (幻燈片)

  二、新課講解:

  記 ,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2,當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對(duì)應(yīng)相等的,作差可以相互抵消.

  (板書)即 ,       ①

  ,      ②

 、冢俚 即 .

  由此對(duì)于一般的等比數(shù)列,其前 項(xiàng)和 ,如何化簡(jiǎn)?

 。ò鍟┑缺葦(shù)列前 項(xiàng)和公式

  仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比 ,即

 。ò鍟 ③兩端同乘以 ,得

 、埽

 、郏艿 ⑤,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意 的取值)

  當(dāng) 時(shí),由③可得 (不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)

  當(dāng) 時(shí),由⑤得 .

  于是

  反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如 的數(shù)列的和,其中 為等差數(shù)列, 為等比數(shù)列.

  (板書)例題:求和: .

  設(shè) ,其中 為等差數(shù)列, 為等比數(shù)列,公比為 ,利用錯(cuò)位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說(shuō)明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問(wèn)題轉(zhuǎn)化為等比數(shù)列求和的問(wèn)題.

  公式其它應(yīng)用問(wèn)題注意對(duì)公比的分類討論即可.

  三、小結(jié):

  1.等比數(shù)列前 項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;

  2.用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

  四、作業(yè) :略.

  五、板書設(shè)計(jì) 

  等比數(shù)列前 項(xiàng)和公式 例題

3.4 等比數(shù)列 篇10

  教學(xué)目標(biāo) 

  1.掌握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

  (1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;

  (2)用方程的思想認(rèn)識(shí)等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;

  2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想.

  3.通過(guò)公式推導(dǎo)的教學(xué),對(duì)學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  先用錯(cuò)位相減法推出等比數(shù)列前 項(xiàng)和公式,而后運(yùn)用公式解決一些問(wèn)題,并將通項(xiàng)公式與前 項(xiàng)和公式結(jié)合解決問(wèn)題,還要用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問(wèn)題中多有涉及,所以對(duì)等比數(shù)列前 項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法. 等比數(shù)列前 項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意 和 兩種情況.

  教學(xué)建議

 。1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問(wèn)題.

 。2)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論.

 。3)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣.

  (4)編擬例題時(shí)要全面,不要忽略 的情況.

 。5)通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大.

 。6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問(wèn)題.

  教學(xué)設(shè)計(jì)示例

  課題:等比數(shù)列前 項(xiàng)和的公式

  教學(xué)目標(biāo) 

  (1)通過(guò)教學(xué)使學(xué)生掌握等比數(shù)列前 項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前 項(xiàng)和.

 。2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).

  (3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再?gòu)囊话愕教厥獾霓q證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)?strong>學(xué)習(xí)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路.

  教學(xué)用具

  幻燈片,課件,電腦.

  教學(xué)方法

  引導(dǎo)發(fā)現(xiàn)法.

  教學(xué)過(guò)程 

  一、新課引入:

 。▎(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題: (幻燈片)

  二、新課講解:

  記 ,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2,當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對(duì)應(yīng)相等的,作差可以相互抵消.

 。ò鍟┘ ,       ①

  ,      ②

 、冢俚 即 .

  由此對(duì)于一般的等比數(shù)列,其前 項(xiàng)和 ,如何化簡(jiǎn)?

  (板書)等比數(shù)列前 項(xiàng)和公式

  仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比 ,即

 。ò鍟 ③兩端同乘以 ,得

  ④,

 、郏艿 ⑤,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意 的取值)

  當(dāng) 時(shí),由③可得 (不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)

  當(dāng) 時(shí),由⑤得 .

  于是

  反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如 的數(shù)列的和,其中 為等差數(shù)列, 為等比數(shù)列.

  (板書)例題:求和: .

  設(shè) ,其中 為等差數(shù)列, 為等比數(shù)列,公比為 ,利用錯(cuò)位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說(shuō)明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問(wèn)題轉(zhuǎn)化為等比數(shù)列求和的問(wèn)題.

  公式其它應(yīng)用問(wèn)題注意對(duì)公比的分類討論即可.

  三、小結(jié):

  1.等比數(shù)列前 項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;

  2.用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

  四、作業(yè) :略.

  五、板書設(shè)計(jì) 

  等比數(shù)列前 項(xiàng)和公式 例題

3.4 等比數(shù)列 篇11

 。ㄟx自人教版高中數(shù)學(xué)第一冊(cè)(上)第三章第五節(jié))一、教材分析1.從在教材中的地位與作用來(lái)看《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).2.從學(xué)生認(rèn)知角度看從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò).3. 學(xué)情分析教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).4. 重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).二、目標(biāo)分析知識(shí)與技能目標(biāo):理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題.過(guò)程與方法目標(biāo):通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.情感與態(tài)度價(jià)值觀:通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).三、過(guò)程分析學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:1.創(chuàng)設(shè)情境,提出問(wèn)題在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿足你的任何要求.西薩說(shuō):請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚.為什么呢?設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥?倲(shù)                        .帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.2.師生互動(dòng),探究問(wèn)題在肯定他們的思路后,我接著問(wèn):1,2,22,…,263是什么數(shù)列?有何特征?                     應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢?探討1:                         ,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有                           ,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:          .老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.3.類比聯(lián)想,解決問(wèn)題這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,                       這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)設(shè)計(jì)意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.4.討論交流,延伸拓展在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項(xiàng)和公式,還有其它方法嗎?我們知道,                                             那么我們能否利用這個(gè)關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有 ,能否聯(lián)想到等比定理從而求出sn呢? 設(shè)計(jì)意圖:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營(yíng)造一個(gè)讓學(xué)生主動(dòng)觀察、思考、討論的氛圍. 以上兩種方法都可以化歸到 , 這其實(shí)就是關(guān)于 的一個(gè)遞推式,遞推數(shù)列有非常重要的研究?jī)r(jià)值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對(duì)學(xué)生的思維發(fā)展有促進(jìn)作用.5.變式訓(xùn)練,深化認(rèn)識(shí)

  首先,學(xué)生獨(dú)立思考,自主解題,再請(qǐng)學(xué)生上臺(tái)來(lái)幻燈演示他們的解答,其它同學(xué)進(jìn)行評(píng)價(jià),然后師生共同進(jìn)行總結(jié).設(shè)計(jì)意圖:采用變式教學(xué)設(shè)計(jì)題組,深化學(xué)生對(duì)公式的認(rèn)識(shí)和理解,通過(guò)直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個(gè)層次的問(wèn)題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成.通過(guò)以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識(shí)和競(jìng)爭(zhēng)意識(shí).6.例題講解,形成技能

  設(shè)計(jì)意圖:解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥,該題有意培養(yǎng)學(xué)生對(duì)含有參數(shù)的問(wèn)題進(jìn)行分類討論的數(shù)學(xué)思想.7.總結(jié)歸納,加深理解以問(wèn)題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再?gòu)闹R(shí)點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié).設(shè)計(jì)意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力.8.故事結(jié)束,首尾呼應(yīng)最后我們回到故事中的問(wèn)題,我們可以計(jì)算出國(guó)王獎(jiǎng)賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽(yáng)鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國(guó)王兌現(xiàn)不了他的承諾.  設(shè)計(jì)意圖:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維.9.課后作業(yè),分層練習(xí)必做: p129練習(xí)1、2、3、4選作:(2)“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”這首中國(guó)古詩(shī)的答案是多少? 設(shè)計(jì)意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間.四、教法分析對(duì)公式的教學(xué),要使學(xué)生掌握與理解公式的來(lái)龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系.在教學(xué)中,我采用“問(wèn)題――探究”的教學(xué)模式,把整個(gè)課堂分為呈現(xiàn)問(wèn)題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個(gè)階段.利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開(kāi),從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率.五、評(píng)價(jià)分析本節(jié)課通過(guò)三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項(xiàng)和公式.錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí).學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過(guò)程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性.同時(shí)通過(guò)精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識(shí),又形成了技能.在此基礎(chǔ)上,通過(guò)民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì).

3.4 等比數(shù)列 篇12

  教學(xué)目的:1.掌握等比數(shù)列的前n項(xiàng)和公式及公式證明思路.2.會(huì)用等比數(shù)列的前n項(xiàng)和公式解決有關(guān)等比數(shù)列的一些簡(jiǎn)單問(wèn)題。教學(xué)重點(diǎn):等比數(shù)列的前n項(xiàng)和公式推導(dǎo)教學(xué)難點(diǎn):靈活應(yīng)用公式解決有關(guān)問(wèn)題教學(xué)過(guò)程:一、復(fù)習(xí)等比數(shù)列的通項(xiàng)公式,有關(guān)性質(zhì),及等比中項(xiàng)等概念。二、引進(jìn)課題,采用印度國(guó)際象棋發(fā)明者的故事,即求           ①用錯(cuò)項(xiàng)相消法推導(dǎo)結(jié)果,兩邊同乘以公比:           ②②-①: 這是一個(gè)龐大的數(shù)字>1.84× ,以小麥千粒重為40 計(jì)算,則麥?傎|(zhì)量達(dá)7000億噸——國(guó)王是拿不出來(lái)的。三、一般公式推導(dǎo):設(shè)     ①乘以公比 ,       ②①-②: , 時(shí):                            時(shí): 公式的推導(dǎo)方法二:有等比數(shù)列的定義, 根據(jù)等比的性質(zhì),有 即 (結(jié)論同上)圍繞基本概念,從等比數(shù)列的定義出發(fā),運(yùn)用等比定理,導(dǎo)出了公式.公式的推導(dǎo)方法三:  =     = = (結(jié)論同上)注意:(1) 和 各已知三個(gè)可求第四個(gè),     (2)注意求和公式中是 ,通項(xiàng)公式中是 不要混淆,     (3)應(yīng)用求和公式時(shí) ,必要時(shí)應(yīng)討論 的情況。四、例1、求等比數(shù)列 的前8項(xiàng)和.(p127,例一)——直接應(yīng)用公式。    例2、某商場(chǎng)第1年銷售計(jì)算機(jī)5000臺(tái),如果平均每年的銷售量比上一年增加10%,那么從第1年起,約幾年內(nèi)可使總銷售量達(dá)到30000臺(tái)(保留到個(gè)位)(p127,例二)——應(yīng)用題,且是公式逆用(求 ),要用對(duì)數(shù)算。    例3、求和:(x+ (其中x≠0,x≠1,y≠1)(p127,例三)——簡(jiǎn)單的“分項(xiàng)法”。    例4、設(shè)數(shù)列 為 求此數(shù)列前 項(xiàng)的和。     ——用錯(cuò)項(xiàng)相消法,注意分 兩種情況討論例5、  已知{ }為等比數(shù)列,且 =a, =b,(ab≠0),求 .——注意這是一道多級(jí)分類討論題. 一級(jí)分類:分 兩種情況討論; 時(shí) ,要分  四、練習(xí):是等比數(shù)列, 是其前n項(xiàng)和,數(shù)列  ( )是否仍成等比數(shù)列?提示:應(yīng)注意等比數(shù)列中的公比q的各種取值情況的討論,還易忽視等比數(shù)列的各項(xiàng)應(yīng)全不為0的前提條件.五、小結(jié)  1. 等比數(shù)列求和公式:當(dāng)q=1時(shí), 當(dāng) 時(shí),   或    ; 2. 是等比數(shù)列 的前n項(xiàng)和,①當(dāng)q=-1且k為偶數(shù)時(shí), 不是等比數(shù)列.②當(dāng)q≠-1或k為奇數(shù)時(shí),  仍成等比數(shù)列。3.這節(jié)課我們從已有的知識(shí)出發(fā),用多種方法(迭加法、運(yùn)用等比性質(zhì)、錯(cuò)位相減法、方程法)推導(dǎo)出了等比數(shù)列的前n項(xiàng)和公式,并在應(yīng)用中加深了對(duì)公式的認(rèn)識(shí).

  六、作業(yè):p129.  習(xí)題3.5  1,2,3,4,5,6,7.

3.4 等比數(shù)列 篇13

  師:上節(jié)課我們對(duì)等差數(shù)列進(jìn)行了復(fù)習(xí),在數(shù)列中另一類重要的數(shù)列是什么? 

  生:等比數(shù)列.

  師:我們這節(jié)課復(fù)習(xí)等比數(shù)列.(點(diǎn)課題并板書)通過(guò)課前預(yù)習(xí),請(qǐng)同學(xué)們思考下列幾個(gè)問(wèn)題:

  1.等比數(shù)列的定義.

  2.等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式.

  3.等比中項(xiàng)的概念.

  4.等比數(shù)列最基本性質(zhì).

  學(xué)生A:回答問(wèn)題1,如果一個(gè)數(shù)列從第二項(xiàng)起每一項(xiàng)與它前一項(xiàng)的商是同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做這個(gè)等比數(shù)列的公比,記為q.

  師:在這個(gè)定義中需要強(qiáng)調(diào)的有哪些?

  學(xué)生A:

  1.數(shù)列從第二項(xiàng)起.

  2.“商”字,即數(shù)列中每一項(xiàng)都不為0.

  3.同一個(gè)常數(shù).

  師:常數(shù)列是等比數(shù)列,這句話對(duì)嗎?

  學(xué)生A:不對(duì),非零常數(shù)列是等比數(shù)列,也是等差數(shù)列;零常數(shù)列是等差數(shù)列但不是等比數(shù)列.

  學(xué)生B:回答問(wèn)題2,等比數(shù)列通項(xiàng)公式為:.

  推廣為:.其中m,n∈N*.

  等比數(shù)列前n項(xiàng)和公式為:

  師:在應(yīng)用等比數(shù)列前n項(xiàng)和公式時(shí)一定要注意公比得1與不得1兩種情況.

  學(xué)生C:回答問(wèn)題3,若a,b,c成等比數(shù)列,則b為a,c的等比中項(xiàng),且.

  師:兩個(gè)數(shù)的等比中項(xiàng)有兩個(gè),這與兩個(gè)數(shù)的等差中項(xiàng)不同.

  學(xué)生D:回答問(wèn)題4,等比數(shù)列有如下性質(zhì):  

  1.若m+n=p+q,m,n,p,q∈N*,則am·an=ap·aq.

  2.若Sn≠0,則Sn,S2n-Sn,S3n-S2n成等比數(shù)列.

  3.下標(biāo)成等差數(shù)列的項(xiàng)構(gòu)成等比數(shù)列.

  師:以上幾位同學(xué)回答得很好,下面我們做幾道練習(xí)題.

  教師在黑板上出幾道小練習(xí)題,學(xué)生在課上迅速完成,然后口答.

  1.在等比數(shù)列中,

  A.         B.         C.或      D.-或-

  2.一個(gè)等比數(shù)列的前n項(xiàng)和為48,前2n項(xiàng)和為60,則前3n項(xiàng)和為(  )

  A.183       B.108       C.75        D.63

  3.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a5a6=9,則log3a1+log3a2+log3a3+…+log3a10=____.

  4.若{an}為等比數(shù)列,且a1+a2+a3=7,a1a2a3=8,求an.

  學(xué)生E:1題選C.在等比數(shù)列{an}中,a7a11=a4a14=6,又a4+a14=5, 

  是或,即選C.

  學(xué)生F:2題選D.在等比數(shù)列中,由性質(zhì)2,前n項(xiàng)和為48,次n項(xiàng)和為12,得末n項(xiàng)和為3,故前3n項(xiàng)和為63,即選D.

  學(xué)生G:填10.因?yàn)閘og3a1+log3a2+log3a3+…+log3a10=log3(a1a2…a10),

  又a1a10=a2a9=…=a5a6=9,

  故log3(a1a2…a10)=log395=10.

  學(xué)生H:由已知得解得或

  所以an=2n-1或an=23-n

  師:上面幾名同學(xué)完成得很好,在解題中我們需注意等比數(shù)列性質(zhì)的應(yīng)用.下面我們解決較綜合性問(wèn)題,找三名同學(xué)板演.

  1.設(shè)等比數(shù)列{an}的公比為q(q>0),它的前n項(xiàng)和為40,前2n項(xiàng)和為3280,且在前n項(xiàng)和中的數(shù)值最大的項(xiàng)為27,求數(shù)列的第2n項(xiàng).

  2.已知{an}的是首項(xiàng)為2,公式為的等比數(shù)列,Sn為它的前n項(xiàng)和.

  (1)用Sn表示Sn+1;

  (2)是否存在自然數(shù)c和k,使得成立?

  3.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且滿足2Sn=3(an-1),

  (1)證明數(shù)列{an}是等比數(shù)列,并求Sn;

  (2)若bn=4n+5,將數(shù)列{an}和{bn}的公共項(xiàng)按它們?cè)谠瓟?shù)列中順序排成一個(gè)新的數(shù)列{dn},證明{dn}是等比數(shù)列,并求其通項(xiàng)公式.

  三個(gè)學(xué)生板演后,師生進(jìn)行點(diǎn)評(píng),剩余時(shí)間留給學(xué)生質(zhì)疑答疑.

  評(píng)析:

  本節(jié)課是一節(jié)高三復(fù)習(xí)課,教學(xué)活動(dòng)主要以回顧、歸納、訓(xùn)練的形式展開(kāi).采用了師生互動(dòng)的開(kāi)放式教學(xué)模式,以學(xué)生為主體、教師為主導(dǎo)的教學(xué)理念,主要體現(xiàn)在如下幾個(gè)方面:

  1.打破以往教師“一言堂”的教學(xué)模式,代之以學(xué)生課上活動(dòng),教師起穿針引線的作用.由學(xué)生自己動(dòng)手歸納總結(jié),解決問(wèn)題.它的步驟是:布置預(yù)習(xí)內(nèi)容(知識(shí)內(nèi)容、題型)----課上提出問(wèn)題----學(xué)生回答問(wèn)題----補(bǔ)充歸納、強(qiáng)調(diào)注意事項(xiàng)----鞏固練習(xí)----個(gè)別答疑.

  2.體現(xiàn)了課堂教學(xué)從“灌輸式”到“引導(dǎo)開(kāi)放式”的轉(zhuǎn)變,以教師提出問(wèn)題、學(xué)生解決問(wèn)題為途徑,以相互補(bǔ)充展開(kāi)教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課上教學(xué)效果.

  3.營(yíng)造開(kāi)放性課堂氛圍,使學(xué)生在輕松、愉悅的環(huán)境下完成學(xué)習(xí)任務(wù),提高了課堂教學(xué)效果.通過(guò)板演,強(qiáng)化解題的規(guī)范性、嚴(yán)謹(jǐn)性.

  為適應(yīng)現(xiàn)在高考要求,復(fù)習(xí)課應(yīng)以提高學(xué)生自身素質(zhì)為出發(fā)點(diǎn),以搞好高三復(fù)習(xí)備考,提高備考效率為目標(biāo),這是擺在所有高三教師面前需要解決的問(wèn)題,我們廣大教師在今后的教學(xué)實(shí)踐中要不斷探討.

3.4 等比數(shù)列 篇14

  以上是第一范文網(wǎng)小編為大家整理的高中數(shù)學(xué)《等比數(shù)列的前n項(xiàng)和》說(shuō)課稿,希望對(duì)大家有所幫助。

  一、教材分析

  1.從在教材中的地位與作用來(lái)看

  《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

  2.從學(xué)生認(rèn)知角度看

  從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò).

  3.學(xué)情分析

  教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).

  4.重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

  教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

  公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).

  二、目標(biāo)分析

  知識(shí)與技能目標(biāo):

  理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)

  上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題.

  過(guò)程與方法目標(biāo):

  通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

  化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態(tài)度價(jià)值觀:

  通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之

  間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).

  三、過(guò)程分析

  學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿足你的任何要求.西薩說(shuō):請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚.為什么呢?

  設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).

  此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥?倲(shù).帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.

  設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆.

  2.師生互動(dòng),探究問(wèn)題

  在肯定他們的思路后,我接著問(wèn):1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢?

  探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

  探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).

  經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?

  設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

  3.類比聯(lián)想,解決問(wèn)題

  這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,

  這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).

  設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.

  對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為

  1q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)

  再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)

  設(shè)計(jì)意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.

  4.討論交流,延伸拓展

3.4 等比數(shù)列 篇15

  教學(xué)目標(biāo) 

  1.掌握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

 。1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;

 。2)用方程的思想認(rèn)識(shí)等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;

  2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、分類討論的思想、等價(jià)轉(zhuǎn)化的思想.

  3.通過(guò)公式推導(dǎo)的教學(xué),對(duì)學(xué)生進(jìn)行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度.

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  先用錯(cuò)位相減法推出等比數(shù)列前 項(xiàng)和公式,而后運(yùn)用公式解決一些問(wèn)題,并將通項(xiàng)公式與前 項(xiàng)和公式結(jié)合解決問(wèn)題,還要用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)、難點(diǎn)是等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用.公式的推導(dǎo)中蘊(yùn)含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯(cuò)位相減法等),這些思想方法在其他數(shù)列求和問(wèn)題中多有涉及,所以對(duì)等比數(shù)列前 項(xiàng)和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法. 等比數(shù)列前 項(xiàng)和公式是分情況討論的,在運(yùn)用中要特別注意 和 兩種情況.

  教學(xué)建議

  (1)本節(jié)內(nèi)容分為兩課時(shí),一節(jié)為等比數(shù)列前 項(xiàng)和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用,另外應(yīng)補(bǔ)充一節(jié)數(shù)列求和問(wèn)題.

  (2)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)是重點(diǎn)內(nèi)容,引導(dǎo)學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論.

 。3)等比數(shù)列前 項(xiàng)和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣.

  (4)編擬例題時(shí)要全面,不要忽略 的情況.

 。5)通項(xiàng)公式與前 項(xiàng)和公式的綜合運(yùn)用涉及五個(gè)量,已知其中三個(gè)量可求另兩個(gè)量,但解指數(shù)方程難度大.

  (6)補(bǔ)充可以化為等差數(shù)列、等比數(shù)列的數(shù)列求和問(wèn)題.

  教學(xué)設(shè)計(jì)示例

  課題:等比數(shù)列前 項(xiàng)和的公式

  教學(xué)目標(biāo) 

  (1)通過(guò)教學(xué)使學(xué)生掌握等比數(shù)列前 項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前 項(xiàng)和.

  (2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì).

 。3)通過(guò)教學(xué)進(jìn)一步滲透從特殊到一般,再?gòu)囊话愕教厥獾霓q證觀點(diǎn),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)?strong>學(xué)習(xí)態(tài)度.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是公式的推導(dǎo)及運(yùn)用,難點(diǎn)是公式推導(dǎo)的思路.

  教學(xué)用具

  幻燈片,課件,電腦.

  教學(xué)方法

  引導(dǎo)發(fā)現(xiàn)法.

  教學(xué)過(guò)程 

  一、新課引入:

 。▎(wèn)題見(jiàn)教材第129頁(yè))提出問(wèn)題: (幻燈片)

  二、新課講解:

  記 ,式中有64項(xiàng),后項(xiàng)與前項(xiàng)的比為公比2,當(dāng)每一項(xiàng)都乘以2后,中間有62項(xiàng)是對(duì)應(yīng)相等的,作差可以相互抵消.

  (板書)即 ,       ①

  ,      ②

 、冢俚 即 .

  由此對(duì)于一般的等比數(shù)列,其前 項(xiàng)和 ,如何化簡(jiǎn)?

 。ò鍟┑缺葦(shù)列前 項(xiàng)和公式

  仿照公比為2的等比數(shù)列求和方法,等式兩邊應(yīng)同乘以等比數(shù)列的公比 ,即

 。ò鍟 ③兩端同乘以 ,得

 、,

  ③-④得 ⑤,(提問(wèn)學(xué)生如何處理,適時(shí)提醒學(xué)生注意 的取值)

  當(dāng) 時(shí),由③可得 (不必導(dǎo)出④,但當(dāng)時(shí)設(shè)想不到)

  當(dāng) 時(shí),由⑤得 .

  于是

  反思推導(dǎo)求和公式的方法——錯(cuò)位相減法,可以求形如 的數(shù)列的和,其中 為等差數(shù)列, 為等比數(shù)列.

 。ò鍟├}:求和: .

  設(shè) ,其中 為等差數(shù)列, 為等比數(shù)列,公比為 ,利用錯(cuò)位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說(shuō)明:錯(cuò)位相減法實(shí)際上是把一個(gè)數(shù)列求和問(wèn)題轉(zhuǎn)化為等比數(shù)列求和的問(wèn)題.

  公式其它應(yīng)用問(wèn)題注意對(duì)公比的分類討論即可.

  三、小結(jié):

  1.等比數(shù)列前 項(xiàng)和公式推導(dǎo)中蘊(yùn)含的思想方法以及公式的應(yīng)用;

  2.用錯(cuò)位相減法求一些數(shù)列的前 項(xiàng)和.

  四、作業(yè) :略.

  五、板書設(shè)計(jì) 

  等比數(shù)列前 項(xiàng)和公式 例題

3.4 等比數(shù)列 篇16

  【教學(xué)目標(biāo)】

  1. 理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式;掌握等比中項(xiàng)的概念. 2. 逐步靈活應(yīng)用等比數(shù)列的概念和通項(xiàng)公式解決問(wèn)題.

  3. 通過(guò)教學(xué),培養(yǎng)學(xué)生的觀察、分析、歸納、推理的能力,培養(yǎng)學(xué)生類比分析的能力.

  【教學(xué)重點(diǎn)】

  等比數(shù)列的概念及通項(xiàng)公式.

  【教學(xué)難點(diǎn)】

  靈活應(yīng)用等比數(shù)列概念及通項(xiàng)公式解決相關(guān)問(wèn)題.

  【教學(xué)方法】

  本節(jié)課主要采用類比教學(xué)法和自主探究教學(xué)法.充分利用現(xiàn)實(shí)情景,盡可能地增加教學(xué)過(guò)程的趣味性、實(shí)踐性.在教師的啟發(fā)指導(dǎo)下,強(qiáng)調(diào)學(xué)生的主動(dòng)參與,讓學(xué)生在等差數(shù)列的基礎(chǔ)上用類比的方法自己去分析、探索,在探索過(guò)程中研究和領(lǐng)悟得出的結(jié)論,從而達(dá)到使學(xué)生既獲得知識(shí)又發(fā)展智能的目的.

  【教學(xué)過(guò)程】略

3.4 等比數(shù)列(通用16篇) 相關(guān)內(nèi)容:
  • 等比數(shù)列

    教學(xué)目標(biāo) 1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題. (1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念; (2)正確認(rèn)識(shí)使用的表示法,能靈活運(yùn)用通項(xiàng)公...

  • 等比數(shù)列的前n項(xiàng)和教學(xué)設(shè)計(jì)(精選4篇)

    一、教材分析:等比數(shù)列的前n項(xiàng)和是高中數(shù)學(xué)必修五第二章第3、3節(jié)的內(nèi)容。它是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)。這部分內(nèi)容授課時(shí)間2課時(shí),本節(jié)課作為第一課時(shí),重在研究等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)及簡(jiǎn)單應(yīng)用,教學(xué)中注...

  • 3.5 等比數(shù)列的前n項(xiàng)和(通用13篇)

    教學(xué)目標(biāo)1.掌握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.(1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;(2)用方程的思想認(rèn)識(shí)等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方...

  • 3.5 等比數(shù)列的前n項(xiàng)和(通用9篇)

    教學(xué)目標(biāo)1.把握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.(1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想;(2)用方程的思想熟悉等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二;2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思想、...

  • 等差等比數(shù)列綜合問(wèn)題

    教學(xué)目標(biāo) 1.熟練運(yùn)用等差、等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和式以及有關(guān)性質(zhì),分析和解決等差、等比數(shù)列的綜合問(wèn)題. 2.突出方程思想的應(yīng)用,引導(dǎo)學(xué)生選擇簡(jiǎn)捷合理的運(yùn)算途徑,提高運(yùn)算速度和運(yùn)算能力.教學(xué)重點(diǎn)與難點(diǎn) 用方程的觀點(diǎn)認(rèn)識(shí)等...

  • 3.5 等比數(shù)列的前n項(xiàng)和(第一課時(shí))

    教學(xué)目的:1.掌握等比數(shù)列的前n項(xiàng)和公式及公式證明思路.2.會(huì)用等比數(shù)列的前n項(xiàng)和公式解決有關(guān)等比數(shù)列的一些簡(jiǎn)單問(wèn)題。教學(xué)重點(diǎn):等比數(shù)列的前n項(xiàng)和公式推導(dǎo)教學(xué)難點(diǎn):靈活應(yīng)用公式解決有關(guān)問(wèn)題教學(xué)過(guò)程:一、復(fù)習(xí)等比數(shù)列的通項(xiàng)公式,有...

  • 等比數(shù)列的前n項(xiàng)和

    教學(xué)目標(biāo) 1.把握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題. (1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想; (2)用方程的思想熟悉等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二; 2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲透方程的思...

  • 說(shuō)課題目:等比數(shù)列的前n項(xiàng)和(第一課時(shí))

    (選自人教版高中數(shù)學(xué)第一冊(cè)(上)第三章第五節(jié))一、教材分析1.從在教材中的地位與作用來(lái)看《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)...

  • 3.5 等比數(shù)列的前n項(xiàng)和(第二課時(shí))

    教學(xué)目的:1.會(huì)用等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式解決有關(guān)等比數(shù)列的 中知道三個(gè)數(shù)求另外兩個(gè)數(shù)的一些簡(jiǎn)單問(wèn)題 2.提高分析、解決問(wèn)題能力. 教學(xué)重點(diǎn):進(jìn)一步熟練掌握等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式. 教學(xué)難點(diǎn):靈活使用公式解決問(wèn)題 教...

  • 等比數(shù)列教學(xué)實(shí)錄

    師:上節(jié)課我們對(duì)等差數(shù)列進(jìn)行了復(fù)習(xí),在數(shù)列中另一類重要的數(shù)列是什么?生:等比數(shù)列.師:我們這節(jié)課復(fù)習(xí)等比數(shù)列.(點(diǎn)課題并板書)通過(guò)課前預(yù)習(xí),請(qǐng)同學(xué)們思考下列幾個(gè)問(wèn)題:1.等比數(shù)列的定義.2.等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式.3.等比中項(xiàng)...

  • 上學(xué)期 3.5等比數(shù)列的前n項(xiàng)和

    教學(xué)設(shè)計(jì)示例課題:等比數(shù)列前 項(xiàng)和的公式教學(xué)目標(biāo) (1)通過(guò)教學(xué)使學(xué)生掌握等比數(shù)列前 項(xiàng)和公式的推導(dǎo)過(guò)程,并能初步運(yùn)用這一方法求一些數(shù)列的前 項(xiàng)和. (2)通過(guò)公式的推導(dǎo)過(guò)程,培養(yǎng)學(xué)生猜想、分析、綜合能力,提高學(xué)生的數(shù)學(xué)素質(zhì). (...

  • 上學(xué)期 3.4等比數(shù)列

    教學(xué)目標(biāo) 1.通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式. 2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力. 3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.教學(xué)重點(diǎn),難點(diǎn) 重點(diǎn)、難點(diǎn)是等比數(shù)列的定義...

  • 等比數(shù)列的前n項(xiàng)和

    教學(xué)目標(biāo) 1.掌握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題. (1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想; (2)用方程的思想認(rèn)識(shí)等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二; 2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲...

  • 等比數(shù)列的前n項(xiàng)和

    教學(xué)目標(biāo) 1.掌握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題. (1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想; (2)用方程的思想認(rèn)識(shí)等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二; 2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲...

  • 等比數(shù)列的前n項(xiàng)和

    教學(xué)目標(biāo) 1.掌握等比數(shù)列前 項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題. (1)理解公式的推導(dǎo)過(guò)程,體會(huì)轉(zhuǎn)化的思想; (2)用方程的思想認(rèn)識(shí)等比數(shù)列前 項(xiàng)和公式,利用公式知三求一;與通項(xiàng)公式結(jié)合知三求二; 2.通過(guò)公式的靈活運(yùn)用,進(jìn)一步滲...

  • 高一數(shù)學(xué)教案
主站蜘蛛池模板: 国产午夜性春猛交xxxx公交车 | 日日摸日日碰夜夜爽亚洲精品蜜乳 | 高清日韩一区二区 | 三年片免费观看大全国语 | 天天做天天爱夜夜爽导航 | 国产乱沈阳女人高潮乱叫老 | 国产精品自在线拍国产手机版 | 免费人成A片在线观看免费 国产在线播放av | 精品免费在线 | 人妻天天爽夜夜爽一区二区 | 成人精品国产 | 色婷婷激情一区二区三区 | 少妇作爱bbbb免费看 | 亚洲三区在线观看 | 亚洲老熟女与小伙bbwtv | 99妻人人做人人爽 | 精品国产乱码久久久久久1区2匹 | 刺激对白勾搭视频在线观看 | 特黄一级免费视频 | 97dyy影院理论片 | 国产精品久久久久久久久久久新郎 | 亚洲精品乱码久久久久久 | 91美剧网在线观看 | 日本欧美一区二区免费不卡 | 欧美一级大片免费 | 汉服女装齐胸襦裙被c到喷水 | 国产综合成色在线视频 | 性色AV免费网站 | 亚洲综合AV一区二区三区不卡 | 人人搞人人爽 | 国产乱子经典视频在线观看 | 91麻豆精品在线观看 | 国产综合社区在线视频 | 小12萝裸体视频国产 | 成人av网站免费观看 | 国产精品高潮呻吟久久av郑州 | 国产精品久久久久久久岛一本蜜乳 | 日本XXXXZZX片免费观看 | 大地资源在线观看视频在线 | 久久96国产精品久久99软件 | 成年人免费公开视频 |