中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 高中數學教案 > 高一數學教案 > 3.4 等比數列(精選13篇)

3.4 等比數列

發布時間:2023-08-02

3.4 等比數列(精選13篇)

3.4 等比數列 篇1

  教學目標 

  1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.

  (1)正確理解的定義,了解公比的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等比中項的概念;

  (2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數及指定的項;

  (3)通過通項公式認識的性質,能解決某些實際問題.

  2.通過對的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.

  3.通過對概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.

  教學建議

  教材分析

  (1)知識結構

  是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

  (2)重點、難點分析

  教學重點是的定義和對通項公式的認識與應用,教學難點 在于通項公式的推導和運用.

  ①與等差數列一樣,也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出的特性,這些是教學的重點.

  ②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

  ③對等差數列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

  教學建議

  (1)建議本節課分兩課時,一節課為的概念,一節課為通項公式的應用.

  (2)概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到的定義.也可將幾個等差數列和幾個混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.

  (3)根據定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

  (4)對比等差數列的表示法,由學生歸納的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.

  (5)由于有了等差數列的研究經驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.

  (6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.

  教學設計示例

  課題:的概念

  教學目標 

  1.通過教學使學生理解的概念,推導并掌握通項公式.

  2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.

  3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.

  教學重點,難點

  重點、難點是的定義的歸納及通項公式的推導.

  教學用具

  投影儀,多媒體軟件,電腦.

  教學方法

  討論、談話法.

  教學過程 

  一、提出問題

  給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)

  ①-2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1, , ,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

  ⑦1,-10,100,-1000,10000,-100000,…

  ⑧0,0,0,0,0,0,0,…

  由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為).

  二、講解新課

  請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

  (板書)

  1.的定義(板書)

  根據與等差數列的名字的區別與聯系,嘗試給下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.

  請學生指出②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是,讓學生討論后得出結論:當 時,數列 既是等差又是,當 時,它只是等差數列,而不是.教師追問理由,引出對的認識:

  2.對定義的認識(板書)

  (1)的首項不為0;

  (2)的每一項都不為0,即 ;

  問題:一個數列各項均不為0是這個數列為的什么條件?

  (3)公比不為0.

  用數學式子表示的定義.

  是 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?

  式子 給出了數列第 項與第 項的數量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

  3.的通項公式(板書)

  問題:用 和 表示第 項 .

  ①不完全歸納法

  .

  ②疊乘法

  ,… , ,這 個式子相乘得 ,所以 .

  (板書)(1)的通項公式

  得出通項公式后,讓學生思考如何認識通項公式.

  (板書)(2)對公式的認識

  由學生來說,最后歸結:

  ①函數觀點;

  ②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).

  這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

  如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.

  三、小結

  1.本節課研究了的概念,得到了通項公式;

  2.注意在研究內容與方法上要與等差數列相類比;

  3.用方程的思想認識通項公式,并加以應用.

  四、作業 (略)

  五、板書設計 

  三.                                                   

  1.的定義

  2.對定義的認識

  3.的通項公式

  (1)公式

  (2)對公式的認識

  探究活動

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(用對數算也行).

3.4 等比數列 篇2

  教學目標 

  1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.

  (1)正確理解的定義,了解公比的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等比中項的概念;

  (2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數及指定的項;

  (3)通過通項公式認識的性質,能解決某些實際問題.

  2.通過對的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.

  3.通過對概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.

  教學建議

  教材分析

  (1)知識結構

  是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

  (2)重點、難點分析

  教學重點是的定義和對通項公式的認識與應用,教學難點 在于通項公式的推導和運用.

  ①與等差數列一樣,也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出的特性,這些是教學的重點.

  ②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

  ③對等差數列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

  教學建議

  (1)建議本節課分兩課時,一節課為的概念,一節課為通項公式的應用.

  (2)概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到的定義.也可將幾個等差數列和幾個混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.

  (3)根據定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

  (4)對比等差數列的表示法,由學生歸納的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.

  (5)由于有了等差數列的研究經驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.

  (6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.

  教學設計示例

  課題:的概念

  教學目標 

  1.通過教學使學生理解的概念,推導并掌握通項公式.

  2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.

  3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.

  教學重點,難點

  重點、難點是的定義的歸納及通項公式的推導.

  教學用具

  投影儀,多媒體軟件,電腦.

  教學方法

  討論、談話法.

  教學過程 

  一、提出問題

  給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)

  ①-2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1, , ,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

  ⑦1,-10,100,-1000,10000,-100000,…

  ⑧0,0,0,0,0,0,0,…

  由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為).

  二、講解新課

  請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

  (板書)

  1.的定義(板書)

  根據與等差數列的名字的區別與聯系,嘗試給下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.

  請學生指出②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是,讓學生討論后得出結論:當 時,數列 既是等差又是,當 時,它只是等差數列,而不是.教師追問理由,引出對的認識:

  2.對定義的認識(板書)

  (1)的首項不為0;

  (2)的每一項都不為0,即 ;

  問題:一個數列各項均不為0是這個數列為的什么條件?

  (3)公比不為0.

  用數學式子表示的定義.

  是 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?

  式子 給出了數列第 項與第 項的數量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

  3.的通項公式(板書)

  問題:用 和 表示第 項 .

  ①不完全歸納法

  .

  ②疊乘法

  ,… , ,這 個式子相乘得 ,所以 .

  (板書)(1)的通項公式

  得出通項公式后,讓學生思考如何認識通項公式.

  (板書)(2)對公式的認識

  由學生來說,最后歸結:

  ①函數觀點;

  ②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).

  這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

  如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.

  三、小結

  1.本節課研究了的概念,得到了通項公式;

  2.注意在研究內容與方法上要與等差數列相類比;

  3.用方程的思想認識通項公式,并加以應用.

  四、作業 (略)

  五、板書設計 

  三.                                                   

  1.的定義

  2.對定義的認識

  3.的通項公式

  (1)公式

  (2)對公式的認識

  探究活動

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(用對數算也行).

3.4 等比數列 篇3

  教學目的:1.靈活應用等比數列的定義及通項公式. 2.熟悉等比數列的有關性質,并系統了解判斷數列是否成等比數列的方法。 教學重點:等比中項的應用及等比數列性質的應用. 教學難點:靈活應用等比數列定義、通項公式、性質解決一些相關問題 教學過程: 一、復習:等比數列的定義、通項公式、等比中項    二、講解新課:   1.等比數列的性質:若m+n=p+q,則 2.判斷等比數列的方法:定義法,中項法,通項公式法 3.等比數列的增減性:當q>1, >0或0<q<1, <0時, { }是遞增數列;當q>1, <0,或0<q<1, >0時, { }是遞減數列;當q=1時, { }是常數列;當q<0時, { }是擺動數列; 三、例題講解 例1 已知:b是a與c的等比中項,且a、b、c同號, 求證:  也成等比數列。 證明:由題設:b2=ac   得:   ∴  也成等比數列 例2 已知等比數列 . 例3  a≠c,三數a, 1, c成等差數列,a , 1, c 成等比數列,求 的值.解: ∵a, 1, c成等差數列, ∴ a+c=2, 又a , 1, c 成等比數列, ∴a  c =1, 有ac=1或ac=-1, 當ac=1時, 由a+c=2得a=1, c=1,與a≠c矛盾,         ∴ ac=-1,   a + c =(a+c) -2ac=6,          ∴  = . 例4 已知無窮數列 ,       求證:(1)這個數列成等比數列            (2)這個數列中的任一項是它后面第五項的 ,            (3)這個數列的任意兩項的積仍在這個數列中。 證:(1) (常數)∴該數列成等比數列。         (2) ,即: 。          (3) ,∵ ,∴ 。             ∴ 且 , ∴ ,(第 項)。 例5 設 均為非零實數, ,     求證: 成等比數列且公比為 。 證一:關于 的二次方程 有實根,   ∴ ,∴   則必有: ,即 ,∴ 成等比數列   設公比為 ,則 , 代入     ∵ ,即 ,即 。 證二:∵       ∴       ∴ ,∴ ,且       ∵ 非零,∴ 。 四、課后作業:課本p125習題3.4   10(2),  11,《精講精練》p126 智能達標訓練.

3.4 等比數列 篇4

  教學目的:1.掌握等比數列的定義. 2.理解等比數列的通項公式及推導; 理解等比中項概念.             教學重點:等比數列的定義及通項公式 教學難點:靈活應用定義式及通項公式解決相關問題 教學過程: 一、復習引入:1.等差數列的定義: - =d ,(n≥2,n∈n*) 2.等差數列的通項公式:     3.幾種計算公差d的方法:d= - = =     4.等差中項: 成等差數列    二、講解新課:   下面我們來看這樣幾個數列,看其又有何共同特點? 1,2,4,8,16,…,263;        ① 5,25,125,625,…;          ② 1,- ,…;            ③ 對于數列①, =  ;  =2(n≥2) 對于數列②, =   ;   =5(n≥2) 對于數列③, = · ; (n≥2) 共同特點:從第二項起,每一項與前一項的比都等于同一個常數

  1.等比數列:一般地,如果一個數列從第二項起,每一項與它的前一項的比等于同一個常數,那么這個數列就叫做等比數列.這個常數叫做等比數列的公比;公比通常用字母q表示(q≠0),即: { }成等比數列 =q( ,q≠0) 注意:等比數列的定義隱含了任一項 2.等比數列的通項公式1: 由等比數列的定義,有: ; ; ; … … … … … … … 3.等比數列的通項公式2: 4.既是等差又是等比數列的數列:非零常數列. 5.等比中項:如果在a與b中間插入一個數g,使a,g,b成等比數列,那么稱這個數g為a與b的等比中項.  即g=± (a,b同號) a,g,b成等比數列 g =ab(a·b≠0) 三、例題例1 課本     p123例1,請同學們認真閱讀題目,并自己動手解題. 例2 一個等比數列的第3項與第4項分別是12與18,求它的第1項與第2項.(課本p123例2) 例3  求下列各等比數列的通項公式: 1.  =-2,  =-8 (答案 ) 2.  =5, 且2 = -3   例4. 求數列 =5, 且  的通項公式 解:  以上各式相乘得:     例5. 已知{an}、{bn}是項數相同的等比數列,求證 是等比數列.(課本p123 例3) 四、練習: 1.求下面等比數列的第4項與第5項: (1)5,-15,45,……;    (2)1.2,2.4,4.8,……; (3) ,……. 2. 一個等比數列的第9項是 ,公比是- ,求它的第1項. 五、作業:課本 p 125習題3.4   1(2)(4),2,  5, 6,7(2),8,  9.

3.4 等比數列 篇5

  教學目標 

  1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.

  (1)正確理解的定義,了解公比的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等比中項的概念;

  (2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數及指定的項;

  (3)通過通項公式認識的性質,能解決某些實際問題.

  2.通過對的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.

  3.通過對概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.

  教學建議

  教材分析

  (1)知識結構

  是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

  (2)重點、難點分析

  教學重點是的定義和對通項公式的認識與應用,教學難點 在于通項公式的推導和運用.

  ①與等差數列一樣,也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出的特性,這些是教學的重點.

  ②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

  ③對等差數列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

  教學建議

  (1)建議本節課分兩課時,一節課為的概念,一節課為通項公式的應用.

  (2)概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到的定義.也可將幾個等差數列和幾個混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.

  (3)根據定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

  (4)對比等差數列的表示法,由學生歸納的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.

  (5)由于有了等差數列的研究經驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.

  (6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.

  教學設計示例

  課題:的概念

  教學目標 

  1.通過教學使學生理解的概念,推導并掌握通項公式.

  2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.

  3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.

  教學重點,難點

  重點、難點是的定義的歸納及通項公式的推導.

  教學用具

  投影儀,多媒體軟件,電腦.

  教學方法

  討論、談話法.

  教學過程 

  一、提出問題

  給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)

  ①-2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1, , ,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

  ⑦1,-10,100,-1000,10000,-100000,…

  ⑧0,0,0,0,0,0,0,…

  由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為).

  二、講解新課

  請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——. (這里播放變形蟲分裂的多媒體軟件的第一步)

  (板書)

  1.的定義(板書)

  根據與等差數列的名字的區別與聯系,嘗試給下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出的定義,標注出重點詞語.

  請學生指出②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是,讓學生討論后得出結論:當 時,數列 既是等差又是,當 時,它只是等差數列,而不是.教師追問理由,引出對的認識:

  2.對定義的認識(板書)

  (1)的首項不為0;

  (2)的每一項都不為0,即 ;

  問題:一個數列各項均不為0是這個數列為的什么條件?

  (3)公比不為0.

  用數學式子表示的定義.

  是 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是 ?為什么不能?

  式子 給出了數列第 項與第 項的數量關系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

  3.的通項公式(板書)

  問題:用 和 表示第 項 .

  ①不完全歸納法

  .

  ②疊乘法

  ,… , ,這 個式子相乘得 ,所以 .

  (板書)(1)的通項公式

  得出通項公式后,讓學生思考如何認識通項公式.

  (板書)(2)對公式的認識

  由學生來說,最后歸結:

  ①函數觀點;

  ②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).

  這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

  如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.

  三、小結

  1.本節課研究了的概念,得到了通項公式;

  2.注意在研究內容與方法上要與等差數列相類比;

  3.用方程的思想認識通項公式,并加以應用.

  四、作業 (略)

  五、板書設計 

  三.                                                   

  1.的定義

  2.對定義的認識

  3.的通項公式

  (1)公式

  (2)對公式的認識

  探究活動

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是 粒,用計算器算一下吧(用對數算也行).

3.4 等比數列 篇6

  師:上節課我們對等差數列進行了復習,在數列中另一類重要的數列是什么? 

  生:等比數列.

  師:我們這節課復習等比數列.(點課題并板書)通過課前預習,請同學們思考下列幾個問題:

  1.等比數列的定義.

  2.等比數列通項公式、前n項和公式.

  3.等比中項的概念.

  4.等比數列最基本性質.

  學生A:回答問題1,如果一個數列從第二項起每一項與它前一項的商是同一個常數,那么這個數列就叫做等比數列,這個常數叫做這個等比數列的公比,記為q.

  師:在這個定義中需要強調的有哪些?

  學生A:

  1.數列從第二項起.

  2.“商”字,即數列中每一項都不為0.

  3.同一個常數.

  師:常數列是等比數列,這句話對嗎?

  學生A:不對,非零常數列是等比數列,也是等差數列;零常數列是等差數列但不是等比數列.

  學生B:回答問題2,等比數列通項公式為:.

  推廣為:.其中m,n∈N*.

  等比數列前n項和公式為:

  師:在應用等比數列前n項和公式時一定要注意公比得1與不得1兩種情況.

  學生C:回答問題3,若a,b,c成等比數列,則b為a,c的等比中項,且.

  師:兩個數的等比中項有兩個,這與兩個數的等差中項不同.

  學生D:回答問題4,等比數列有如下性質:  

  1.若m+n=p+q,m,n,p,q∈N*,則am·an=ap·aq.

  2.若Sn≠0,則Sn,S2n-Sn,S3n-S2n成等比數列.

  3.下標成等差數列的項構成等比數列.

  師:以上幾位同學回答得很好,下面我們做幾道練習題.

  教師在黑板上出幾道小練習題,學生在課上迅速完成,然后口答.

  1.在等比數列中,

  A.         B.         C.或      D.-或-

  2.一個等比數列的前n項和為48,前2n項和為60,則前3n項和為(  )

  A.183       B.108       C.75        D.63

  3.在各項均為正數的等比數列{an}中,若a5a6=9,則log3a1+log3a2+log3a3+…+log3a10=____.

  4.若{an}為等比數列,且a1+a2+a3=7,a1a2a3=8,求an.

  學生E:1題選C.在等比數列{an}中,a7a11=a4a14=6,又a4+a14=5, 

  是或,即選C.

  學生F:2題選D.在等比數列中,由性質2,前n項和為48,次n項和為12,得末n項和為3,故前3n項和為63,即選D.

  學生G:填10.因為log3a1+log3a2+log3a3+…+log3a10=log3(a1a2…a10),

  又a1a10=a2a9=…=a5a6=9,

  故log3(a1a2…a10)=log395=10.

  學生H:由已知得解得或

  所以an=2n-1或an=23-n

  師:上面幾名同學完成得很好,在解題中我們需注意等比數列性質的應用.下面我們解決較綜合性問題,找三名同學板演.

  1.設等比數列{an}的公比為q(q>0),它的前n項和為40,前2n項和為3280,且在前n項和中的數值最大的項為27,求數列的第2n項.

  2.已知{an}的是首項為2,公式為的等比數列,Sn為它的前n項和.

  (1)用Sn表示Sn+1;

  (2)是否存在自然數c和k,使得成立?

  3.設Sn為數列{an}的前n項和,且滿足2Sn=3(an-1),

  (1)證明數列{an}是等比數列,并求Sn;

  (2)若bn=4n+5,將數列{an}和{bn}的公共項按它們在原數列中順序排成一個新的數列{dn},證明{dn}是等比數列,并求其通項公式.

  三個學生板演后,師生進行點評,剩余時間留給學生質疑答疑.

  評析:

  本節課是一節高三復習課,教學活動主要以回顧、歸納、訓練的形式展開.采用了師生互動的開放式教學模式,以學生為主體、教師為主導的教學理念,主要體現在如下幾個方面:

  1.打破以往教師“一言堂”的教學模式,代之以學生課上活動,教師起穿針引線的作用.由學生自己動手歸納總結,解決問題.它的步驟是:布置預習內容(知識內容、題型)----課上提出問題----學生回答問題----補充歸納、強調注意事項----鞏固練習----個別答疑.

  2.體現了課堂教學從“灌輸式”到“引導開放式”的轉變,以教師提出問題、學生解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課上教學效果.

  3.營造開放性課堂氛圍,使學生在輕松、愉悅的環境下完成學習任務,提高了課堂教學效果.通過板演,強化解題的規范性、嚴謹性.

  為適應現在高考要求,復習課應以提高學生自身素質為出發點,以搞好高三復習備考,提高備考效率為目標,這是擺在所有高三教師面前需要解決的問題,我們廣大教師在今后的教學實踐中要不斷探討.

3.4 等比數列 篇7

  一、教材分析

  1.從在教材中的地位與作用來看

  《等比數列的前n項和》是數列這一章中的一個重要內容,從教材的編寫順序上來看,等比數列的前n項和是第一章“數列”第六節的內容,它是“等差數列的前n項和”與“等比數列”內容的延續、與前面學習的函數等知識也有著密切的聯系。就知識的應用價值上來看,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。就內容的人文價值上來看,等比數列的前n項和公式的探究與推導需要學生觀察、分析、歸納、猜想,有助于培養學生的創新思維和探索精神,是培養學生應用意識和數學能力的良好載體。

  2.從學生認知角度來看

  從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q = 1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

  3. 學情分析

  教學對象是剛進入高二的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但對問題的分析缺乏深刻性和嚴謹性。

  4. 重點、難點

  教學重點:公式的推導、公式的特點和公式的運用.

  教學難點:公式的推導方法和公式的靈活運用.

  公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

  二、目標分析

  1.知識與技能目標:理解等比數列的前n項和公式的推導方法;掌握等比數列的前n項和公式并能運用公式解決一些簡單問題。

  2.過程與方法目標:通過公式的推導過程,培養學生猜想、分析、綜合的思維能力,提高學生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉化思想,優化思維品質。

  3.情感態度與價值觀:通過經歷對公式的探索,激發學生的求知欲,鼓勵學生大膽嘗試、勇于探索、敢于創新,磨練思維品質,從中獲得成功的體驗,感受思維的奇異美、結構的對稱美、形式的簡潔美、數學的嚴謹美。用數學的觀點看問題,一些所謂不可理解的事就可以給出合理的解釋,從而幫助我們用科學的態度認識世界。

  三、教學方法與教學手段

  本節課屬于新授課型,主要利用計算機輔助教學,

  采用啟發探究,合作學習,自主學習等的教學模式.

  四、教學過程分析

  學生是認知的主體,也是教學活動的主體,設計教學過程必須遵循學生的認知規律,引導學生去經歷知識的形成與發展過程,結合本節課的特點,我按照自主學習的教學模式來設計如下的教學過程,目的是在教學過程中促使學生自主學習,培養自主學習的習慣和意識,形成自主學習的能力。

  1.創設情境,提出問題

  一個窮人到富人那里去借錢,原以為富人不愿意,哪知富人一口答應了下來,但提出了如下條件:在30天中,富人第一天借給窮人1萬元,第二天借給窮人2萬元,以后每天所借的錢數都比上一天多1萬;但借錢第一天,窮人還1分錢,第二天還2分錢,以后每天所還的'錢數都是上一天的兩倍,30天后互不相欠.窮人聽后覺得挺劃算,本想定下來,但又想到此富人是吝嗇出了名的,怕上當受騙,所以很為難。”請在座的同學思考討論一下,窮人能否向富人借錢?

  啟發引導學生數學地觀察問題,構建數學模型。

  學生直覺認為窮人可以向富人借錢,教師引導學生自主探求,得出:

  窮人30天借到的錢:(萬元)

  窮人需要還的錢:?

  2.學生探究,解決情境

  (2)教師緊接著把如何求?的問題讓學生探究,

  ①若用公比2乘以上面等式的兩邊,得到

  ②

  若②式減去①式,可以消去相同的項,得到:

  (分) ≈1073(萬元) > 465(萬元)

  由此得出窮人不能向富人借錢

  【設計意圖】留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是很顯然的事,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而培養學生的辯證思維能力.

  解決情境問題:經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就可以消去了,得到: ≈1073(萬元) > 465(萬元) 。老師強調指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  【設計意圖】經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了,讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數 學的信心,同時也為推導一般等比數列前n項和提供了方法。

  3.類比聯想,解決問題

  這時我再順勢引導學生將結論一般化,設等比數列為,公比為q,如何求它的前n項和?讓學生自主完成,然后對個別學生進行指導。

  一般等比數列前n項和:

  即

  方法:錯位相減法

  這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?

  在學生推導完成之后,我再問:由得

  【設計意圖】在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

  4.小組合作,交流展示

  探究1.求和

  探究2.求等比數列的第5項到第10項的和.

  方法1: 觀察、發現:.

  方法2:此等比數列的連續項從第5項到第10項構成一個新的等比數列。

  探究3:求的前n項和.

  【設計意圖】采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數學認知結構的形成.通過以上形式,讓全體學生都參與教學,以此培養學生自主學習的意識.解題時,以學生分析為主,教師適時給予點撥。

  5.總結歸納,加深理解

  以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法兩方面總結。

  1.等比數列的前n項和公式

  2. 數學思想: (1)分類討論 (2)方程思想

  3.數學方法: 錯位相減法

  【設計意圖】以此培養學生的口頭表達能力,歸納概括能力。

  6.當堂檢測

  (1)口答:

  在公比為q的等比數列中

  若,則________,若,則________

  若=3,=81,求q及 ,

  若 ,求及q.

  (2)判斷是非:

  ① ( )

  ② ( )

  ③若③且,則

  ( )

  【設計意圖】對公式的再認識,剖析公式中的基本量及結構特征,識記公式,并加強計算能力的訓練。

  7.課后作業,分層練習

  必做: P30習題 1—3 A組 第1題,

  選作題1:求的前n項和

  (2)思考題:能否用其他方法推導等比數列前n項和公式

  .

  【設計意圖】布置彈性作業以使各個層次的學生都有所發展. 讓學有余力的學生有思考的空間,便于學生開展自主學習。

  五、評價分析

  本節課通過推導方法的研究,使學生掌握了等比數列前n項和公式.錯位相減:變加為減,等價轉化;遞推思想:縱橫聯系,揭示本質;學生從中深刻地領會到推導過程中所蘊含的數學思想,培養了學生思維的深刻性、敏銳性、廣闊性、批判性.同時通過展示交流,學生點評,教師總結,使學生既鞏固了知識,又形成了技能,在此基礎上,通過民主和諧的課堂氛圍,培養了學生自主學習、合作交流的學習習慣,也培養了學生勇于探索、不斷創新的思維品質,形成學習能力。

  六、教學設計說明

  1.情境設置生活化.

  本著新課程的教學理念,考慮到高二學生的心理特點,讓學生學生初步了解“數學來源于生活”,采用故事的形式創設問題情景,意在營造和諧、積極的學習氣氛,激發學生主動探究的欲望。

  2.問題探究活動化.

  教學中本著以學生發展為本的理念,充分給學生想的時間、說的機會以及展示思維過程的舞臺,通過他們自主學習、合作探究,展示學生解決問題的思想方法,共享學習成果,體驗數學學習成功的喜悅.通過師生之間不斷合作和交流,發展學生的數學觀察能力和語言表達能力,培養學生思維的發散性和嚴謹性。

  3.辨析質疑結構化.

  在理解公式的基礎上,及時進行正反兩方面的“短、平、快”填空和判斷是非練習.通過總結、辨析和反思,強化了公式的結構特征,促進學生主動建構,有助于學生形成知識模塊,優化知識體系。

  4.鞏固提高梯度化.

  例題通過公式的正用和逆用進一步提高學生運用知識的能力;由教科書中的例題改編而成,并進行適當的變式,可以提高學生的模式識別的能力,培養學生思維的深刻性和靈活性。

  5.思路拓廣數學化.

  從整理知識提升到強化方法,由課內鞏固延伸到課外思考,變“知識本位”為“學生本位”,使數學學習成為提高學生素質的有效途徑。以生活中的實例作為思考,讓學生認識到數學來源于生活并應用于生活,生活中處處有數學.

  6.作業布置彈性化.

  通過布置彈性作業,為學有余力的學生提供進一步發展的空間,有利于豐富學生的知識,拓展學生的視野,提高學生的數學素養.

  七.教學反思

  學生的根據高二學生心理特點、教材內容、遵循因材施教原則和啟發性教學思想,本節課的教學策略與方法我采用規則學習和問題解決策略,即“案例—公式—應用”,案例為淺層次要求,使學生有概括印象。公式為中層次要求,由淺入深,重難點集中推導講解,便于突破。應用為綜合要求,多角度、多情境中消化鞏固所學,反饋驗證本節教學目標的落實。

  其中,案例是基礎,使學生感知教材;公式為關鍵,使學生理解教材;練習為應用,使學生鞏固知識,舉一反三。

  在這三步教學中,以啟發性強的小設問層層推導,輔之以學生的分組小討論并充分運用直觀完整的板書和計算機課件等教輔用具、手段,改變教師講、學生聽的填鴨式教學模式,充分體現學生是主體,教師教學服務于學生的思路,而且學生通過“案例—公式—應用”,由淺入深,由感性到理性,由直觀到抽象,不僅加深了學生理解鞏固與應用,也培養了

  思維能力。

  這節課總體上感覺備課比較充分,各個環節相銜接,能夠形成一節完整就為系統的課。本節課教學過程分為導入新課、公式推導、合作探究、課堂小結、當堂檢測、布置作業。本節課總體上講對于內容的把握基本到位,對學生的定位準確,教學過程中留給學生思考的時間,以學生為主體。

  .亮點之處:

  學生成為課堂的主體,教師要甘當學生的綠葉

  由于數學的抽象、思維嚴謹等特點,學生往往對于一些較為復雜或者變化多樣的題目容易望而生畏,出現懶得動腦思考、動筆去做的現象。教師也常因為時間的限制不可能給學生過多的時間去做“無用功”。在本節課上我放手讓學生去思考,讓學生去摸索。不怕學生出錯,就是讓學生能夠在摸索中增強思維能力、解題技能和計算經驗。特別是在例3中,教師針對題目做了簡要的分析和提示,讓學生去嘗試著解題。張漫同學的板書詳盡,將思路方法概括表述出來,過程完整。只是結果出現了一個小錯誤,教師在點評過程中給予指出,同時也個結果錯誤也是學生經常犯的。

3.4 等比數列 篇8

  一、教學背景分析

  1.教學內容分析

  本節課是高中數學(北師大版必修5)第一章第3節第二課時,是“等差數列的前n項和”與“等比數列”內容的延續,與函數等知識有著密切的聯系,也為以后學數列的求和,數學歸納法等做好鋪墊。而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養,如在“分期付款”等實際問題中也經常涉及到。本節以數學文化背境引入課題有助于提升學生的創新思維和探索精神,是提高數學文化素養和培養學生應用意識的良好載體。

  2.學情分析

  從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是,本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q = 1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。教學對象是高二理科班的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不完全。

  二.教學目標

  依據新課程標準及教材內容,結合學生的認知發展水平和心理特點,確定本節課的。教學目標如下:

  1、知識與技能目標:理解等比數列前n項和公式推導方法;掌握等比數列前n項和公式并能運用公式解決一些簡單問題。

  2.過程與方法目標:感悟并理解公式的推導過程,感受公式探求過程所蘊涵的從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉化思想,優化思維品質,初步提高學生的建模意識和探究、分析與解決問題的能力。

  3、情感與態度目標:通過經歷對公式的探索過程,對學生進行思維嚴謹性的訓練,激發學生的求知欲,鼓勵學生大膽嘗試、勇于探索、敢于創新,磨練思維品質,從中獲得成功的體驗,感受數學的奇異美、結構的對稱美、形式的簡潔美和數學的嚴謹美。

  三.重點,難點

  教學重點:等比數列前“等比數列的前n項和”項和公式的推導及其簡單應用。

  教學難點:公式的推導思想方法及公式應用中q與1的關系。

  四.教學方法

  啟發引導,探索發現,類比。

  五.教學過程

  (一)借助數學文化背境提出問題

  在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

  【設計意圖】:設計這個數學文化背境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容也緊扣本節課的主題與重點。

  問題1:同學們,你們知道西薩要的是多少粒小麥嗎?

  引導學生寫出麥粒總數“等比數列的前n項和”

  (二)師生互動,探究問題

  問題2:“等比數列的前n項和”

  有些學生會說用計算器來求(老師當然肯定這種做法,但學生很快發現比較難求。)

  問題3:同學們,我們來分析一下這個和式有什么特征?

  (學生會發現,后一項都是前一項的2倍)

  問題4:如果我們把(1)式每一項都乘以2,就變成了它的后一項,那么我們若在此等式兩邊同以2,得到(2)式:“等比數列的前n項和”

  比較(1)(2)兩式,你有什么發現?(學生經過比較發現:(1)、(2)兩式有許多相同的項)

  問題5:將兩式相減,相同的項就消去了,得到什么呢?。(學生會發現:“等比數列的前n項和”

  【設計意圖】:這五個問題層層深入,剖析了錯位相減法中減的妙用,使學生容易接受為什么要錯位相減,經過繁難的計算之后,突然發現上述解法,也讓學生感受到這種方法的神奇。

  問題6:老師指出這就是錯位相減法,并要求學生縱觀全過程,反思為什么(1)式兩邊要同乘以2呢?

  【設計意圖】:經過繁難的計算之苦后,突然發現上述解法,讓學生對錯位相減法有一個深刻的認識,也為探究等比數列求和公式的'推導做好鋪墊。

  (三)類比聯想,構建新知

  這時我再順勢引導學生將結論一般化。

  問題7:如何求等比數列“等比數列的前n項和”的前“等比數列的前n項和”項和“等比數列的前n項和”:

  即:“等比數列的前n項和”

  (學生相互合作,討論交流,老師巡視課堂,并請學生上臺板演。)

  注:學生已有上面問題的處理經驗,肯定有不少學生會想到“錯位相減法”,教師可放手讓學生探究。

  將“等比數列的前n項和”兩邊同時乘以公比“等比數列的前n項和”后會得到“等比數列的前n項和”,兩個等式相減后,哪些項被消去,還剩下哪些項,剩下項的符號有沒有改變?這些都是用錯位相減法求等比數列前“等比數列的前n項和”項和的關鍵所在,讓學生先思考,再討論,最后師在突出強調,加深印象。

  兩式作差得到“等比數列的前n項和”時,肯定會有學生直接得到“等比數列的前n項和”,不忙揭露錯誤,后面再反饋這個易錯點,從而掌握公式的本質。

  【設計意圖】:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的成就感。增強學習數學的興趣和學好數學的信心。

  問題8:由“等比數列的前n項和”得“等比數列的前n項和”對不對呢?這里的“等比數列的前n項和”能不能等于1呀?等比數列中的公比能不能為1?那么“等比數列的前n項和”時是什么數列?此時“等比數列的前n項和”?你能歸納出等比數列的前n項和公式嗎?(這里引導學生對“等比數列的前n項和”進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

  再次追問:結合等比數列的通項公式“等比數列的前n項和”,如何把“等比數列的前n項和”用“等比數列的前n項和” 、“等比數列的前n項和” 、“等比數列的前n項和”表示出來?(引導學生得出公式的另一形式)

  公式:“等比數列的前n項和”

  注:公式的理解

  知三求二:n q a1 an Sn;

  n的含義:項數(通項公式是qn-1);

  q的含義:公比(注意q=1,分類討論);

  錯位相減法:乘公比(作用是構造許多相同項)后錯開一項后再減。

  【設計意圖】:通過反問學生歸納,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管僅僅幾句話,然而卻有畫龍點睛之妙用。

  (四)討論交流,延伸拓展

  問題9:探究等比數列前n項和公式,還有其它方法嗎?

  “等比數列的前n項和”(學生討論交流,老師指導。依學生的認知水平可能會有以下幾種方法)

  (1)錯位相減法

  “等比數列的前n項和”(2)提出公比q

  “等比數列的前n項和”(3)累加法

  【設計意圖】:以疑導思,激發學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍。這有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發展有促進作用。

  (五)應用公式,深化理解

  例1:在等比數列{ an }中,

  (1)已知a1=3,q=2,n=6,求Sn;

  (2)已知a1=8,q=1/2,an =1/2,求Sn;

  (3)已知a1=-1.5,a4=96,求q與S4;

  (4)已知a1=2,S3=26,求q與a3。

  【設計意圖】:初步應用公式,理解等比數列的基本量也可“知三求二”,體會方程思想。

  例2:等比數列{ an }中,已知a3=3/2,S3=9/2,求a1與q。

  【設計意圖】:注意公式中的分類討論思想。

  例3:求數列{n+ }的前n項和。

  【設計意圖】:將未知問題轉化為已知問題,進一步體會等比數列前n項和公式的應用。

  練習1:求等比數列“等比數列的前n項和”前8項和;

  練習2:a3=,S9=,求a1和q;

  練習3:求數列{n+an}的前n項和。

  (先由學生獨立求解,然后抽學生板演,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予適時的表揚。)

  【設計意圖】:通過練習,深化認識,增加思維的梯度的同時,提高學生的模式識別能力,滲透轉化思想.

  (六)總結歸納,加深理解

  問題10:這節課你有什么收獲?學到了哪些知識和方法?

  【設計意圖】:以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法等方面總結。以此培養學生的口頭表達能力,歸納概括能力。

  (學生小結歸納,不足之處老師補充說明。)

  1.公式:等比數列前n項和

  當q≠1時,Sn= =

  當q=1時,Sn=na1

  2.方法:錯位相減法(乘以公比)

  3.思想:分類討論(公式選擇)

  (七)故事結束,首尾呼應

  最后我們回到故事中的問題,可以計算出國王獎賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產量的459倍,顯然國王兌現不了他的承諾了。

  【設計意圖】:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續積極思維。

  (八)課后作業,分層練習

  (1)閱讀本節內容,預習下一節內容;

  (2)書面作業:習題P30 8 。10;

  (3)拓展作業:求和:“等比數列的前n項和”

3.4 等比數列 篇9

  一、教材分析

  從教材的編寫順序上來看,等比數列的前n項和是第三章“數列”第五節的內容,一方面它是“等差數列的前n項和”與“等比數列”內容的延續、與前面學習的函數等知識也有著密切的聯系,另一方面它又為進一步學習“數列的極限”等內容作準備。

  就知識的應用價值上來看,它是從大量數學問題和現實問題中抽象出來的一個模型,在公式推導中所蘊涵的數學思想方法如分類討論等在各種數列求和問題中有著廣泛的應用;另外它在如“分期付款”等實際問題的計算中也經常涉及到。

  就內容的人文價值上來看,等比數列的前n項和公式的探究與推導需要學生觀察、分析、歸納、猜想,有助于培養學生的創新思維和探索精神,是培養學生應用意識和數學能力的良好載體。

  教師教學用書安排“等比數列的前n項和”這部分內容授課時間2課時,本節課作為第一課時,重在研究等比數列的前n項和公式的推導及簡單應用,教學中注重公式的形成推導過程并充分揭示公式的結構特征和內在聯系。

  二、教學目標

  依據課程標準,結合學生的認知水平和年齡特點,確定本節課的教學目標如下:

  知識與技能目標:理解等比數列的前n項和公式的推導方法;掌握等比數列的前n項和公式并能運用公式解決一些簡單問題。

  過程與方法目標:通過公式的推導過程,提高學生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉化思想,優化思維品質。

  情感與態度目標:通過經歷對公式的探索,激發學生的求知欲,鼓勵學生大膽嘗試、勇于探索、敢于創新,磨練思維品質,從中獲得成功的體驗,感受思維的奇異美、結構的對稱美、形式的簡潔美、數學的嚴謹美。

  三、教學重點和難點

  重點:等比數列的'前 項和公式的推導及其簡單應用。從教材體系來看,它為后繼學習提供了知識基礎,具有承上啟下的作用;從知識特點而言,蘊涵豐富的思想方法;就能力培養來看,通過公式推導教學可培養學生的運用數學語言交流表達的能力。

  突出重點方法:“抓三線、突重點”,即(一)知識技能線:問題情境→公式推導→公式運用;(二)過程與方法線:特殊到一般、猜想歸納→ 錯位相減法等→轉化、方程思想;(三)能力線:觀察能力→數學思想解決問題能力→靈活運用能力及嚴謹態度。

  難點:等比數列的前 項和公式的推導。從學生認知水平來看,學生的探究能力和用數學語言交流的能力還有待提高。從知識本身特點來看,等比數列前n項和公式的推導方法和等差數列的的前n項和公式的推導方法可比性低,無法用類比的方法進行,它需要對等比數列的概念和性質能充分理解并融會貫通,而知識的整合對學生來說恰又是比較困難的,而且錯位相減法是第一次碰到,對學生來說是個新鮮事物。

  突破難點手段:“抓兩點,破難點”,即一抓學生情感和思維的興奮點,激發他們的興趣,鼓勵學生大膽猜想、積極探索,及時地給以鼓勵,使他們知難而進;二抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給予適當的提示和指導。

3.4 等比數列 篇10

  教學目標

  1.把握等比數列前 項和公式,并能運用公式解決簡單的問題.

  (1)理解公式的推導過程,體會轉化的思想;

  (2)用方程的思想熟悉等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二;

  2.通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉化的思想.

  3.通過公式推導的教學,對學生進行思維的嚴謹性的練習,培養他們實事求是的科學態度.

  教學建議

  教材分析

  (1)知識結構

  先用錯位相減法推出等比數列前 項和公式,而后運用公式解決一些問題,并將通項公式與前 項和公式結合解決問題,還要用錯位相減法求一些數列的前 項和.

  (2)重點、難點分析

  教學重點、難點是等比數列前 項和公式的推導與應用.公式的推導中蘊含了豐富的數學思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數列求和問題中多有涉及,所以對等比數列前 項和公式的要求,不單是要記住公式,更重要的是把握推導公式的方法. 等比數列前 項和公式是分情況討論的,在運用中要非凡注重 和 兩種情況.

  教學建議

  (1)本節內容分為兩課時,一節為等比數列前 項和公式的推導與應用,一節為通項公式與前 項和公式的綜合運用,另外應補充一節數列求和問題.

  (2)等比數列前 項和公式的推導是重點內容,引導學生觀察實例,發現規律,歸納總結,證實結論.

  (3)等比數列前 項和公式的推導的其他方法可以給出,提高學生學習的愛好.

  (4)編擬例題時要全面,不要忽略 的情況.

  (5)通項公式與前 項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數方程難度大.

  (6)補充可以化為等差數列、等比數列的數列求和問題.

  教學設計示例

  課題:等比數列前 項和的公式

  教學目標

  (1)通過教學使學生把握等比數列前 項和公式的推導過程,并能初步運用這一方法求一些數列的前 項和.

  (2)通過公式的推導過程,培養學生猜想、分析、綜合能力,提高學生的數學素質.

  (3)通過教學進一步滲透從非凡到一般,再從一般到非凡的辯證觀點,培養學生嚴謹的學習態度.

  教學重點,難點

  教學重點是公式的推導及運用,難點是公式推導的思路.

  教學用具

  幻燈片,課件,電腦.

  教學方法

  引導發現法.

  教學過程

  一、新課引入:

  (問題見教材第129頁)提出問題: (幻燈片)

  二、新課講解:

  記 ,式中有64項,后項與前項的比為公比2,當每一項都乘以2后,中間有62項是對應相等的,作差可以相互抵消.

  (板書)即 , ①

  , ②

  ②-①得 即 .

  由此對于一般的等比數列,其前 項和 ,如何化簡?

  (板書)等比數列前 項和公式

  仿照公比為2的等比數列求和方法,等式兩邊應同乘以等比數列的公比 ,即

  (板書) ③兩端同乘以 ,得

  ④,

  ③-④得 ⑤,(提問學生如何處理,適時提醒學生注重 的取值)

  當 時,由③可得 (不必導出④,但當時設想不到)

  當 時,由⑤得 .

  于是

  反思推導求和公式的方法——錯位相減法,可以求形如 的數列的和,其中 為等差數列, 為等比數列.

  (板書)例題:求和: .

  設 ,其中 為等差數列, 為等比數列,公比為 ,利用錯位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說明:錯位相減法實際上是把一個數列求和問題轉化為等比數列求和的問題.

  公式其它應用問題注重對公比的分類討論即可.

  三、小結:

  1.等比數列前 項和公式推導中蘊含的思想方法以及公式的應用;

  2.用錯位相減法求一些數列的前 項和.

  四、作業:略 .

  五、板書設計:

  等比數列前 項和公式例題

3.4 等比數列 篇11

  教學目標 

  1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題.

  (1)理解公式的推導過程,體會轉化的思想;

  (2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二;

  2.通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉化的思想.

  3.通過公式推導的教學,對學生進行思維的嚴謹性的訓練,培養他們實事求是的科學態度.

  教學建議

  教材分析

  (1)知識結構

  先用錯位相減法推出等比數列前 項和公式,而后運用公式解決一些問題,并將通項公式與前 項和公式結合解決問題,還要用錯位相減法求一些數列的前 項和.

  (2)重點、難點分析

  教學重點、難點是等比數列前 項和公式的推導與應用.公式的推導中蘊含了豐富的數學思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數列求和問題中多有涉及,所以對等比數列前 項和公式的要求,不單是要記住公式,更重要的是掌握推導公式的方法. 等比數列前 項和公式是分情況討論的,在運用中要特別注意 和 兩種情況.

  教學建議

  (1)本節內容分為兩課時,一節為等比數列前 項和公式的推導與應用,一節為通項公式與前 項和公式的綜合運用,另外應補充一節數列求和問題.

  (2)等比數列前 項和公式的推導是重點內容,引導學生觀察實例,發現規律,歸納總結,證明結論.

  (3)等比數列前 項和公式的推導的其他方法可以給出,提高學生學習的興趣.

  (4)編擬例題時要全面,不要忽略 的情況.

  (5)通項公式與前 項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數方程難度大.

  (6)補充可以化為等差數列、等比數列的數列求和問題.

  教學設計示例

  課題:等比數列前 項和的公式

  教學目標 

  (1)通過教學使學生掌握等比數列前 項和公式的推導過程,并能初步運用這一方法求一些數列的前 項和.

  (2)通過公式的推導過程,培養學生猜想、分析、綜合能力,提高學生的數學素質.

  (3)通過教學進一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養學生嚴謹的學習態度.

  教學重點,難點

  教學重點是公式的推導及運用,難點是公式推導的思路.

  教學用具

  幻燈片,課件,電腦.

  教學方法

  引導發現法.

  教學過程 

  一、新課引入:

  (問題見教材第129頁)提出問題: (幻燈片)

  二、新課講解:

  記 ,式中有64項,后項與前項的比為公比2,當每一項都乘以2后,中間有62項是對應相等的,作差可以相互抵消.

  (板書)即 ,       ①

  ,      ②

  ②-①得 即 .

  由此對于一般的等比數列,其前 項和 ,如何化簡?

  (板書)等比數列前 項和公式

  仿照公比為2的等比數列求和方法,等式兩邊應同乘以等比數列的公比 ,即

  (板書) ③兩端同乘以 ,得

  ④,

  ③-④得 ⑤,(提問學生如何處理,適時提醒學生注意 的取值)

  當 時,由③可得 (不必導出④,但當時設想不到)

  當 時,由⑤得 .

  于是

  反思推導求和公式的方法——錯位相減法,可以求形如 的數列的和,其中 為等差數列, 為等比數列.

  (板書)例題:求和: .

  設 ,其中 為等差數列, 為等比數列,公比為 ,利用錯位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說明:錯位相減法實際上是把一個數列求和問題轉化為等比數列求和的問題.

  公式其它應用問題注意對公比的分類討論即可.

  三、小結:

  1.等比數列前 項和公式推導中蘊含的思想方法以及公式的應用;

  2.用錯位相減法求一些數列的前 項和.

  四、作業 :略.

  五、板書設計 

  等比數列前 項和公式 例題

3.4 等比數列 篇12

  一、教材分析:

  等比數列的前n項和是高中數學必修五第二章第3、3節的內容。它是“等差數列的前n項和”與“等比數列”內容的延續。這部分內容授課時間2課時,本節課作為第一課時,重在研究等比數列的前n項和公式的推導及簡單應用,教學中注重公式的形成推導過程并充分揭示公式的結構特征和內在聯系。意在培養學生類比分析、分類討論、歸納推理、演繹推理等數學思想。在高考中占有重要地位。

  二、教學目標

  根據上述教學內容的地位和作用,結合學生的認知水平和年齡特點,確定本節課的教學目標如下:

  1、知識與技能:理解等比數列的前n項和公式的推導方法;掌握等比數列的前n項和公式并能運用公式解決一些簡單問題。

  2、過程與方法:通過公式的推導過程,提高學生的建模意識及探究問題、類比分析與解決問題的能力,培養學生從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉化思想,優化思維品質。

  3、情感與態度:通過自主探究,合作交流,激發學生的求知欲,體驗探索的艱辛,體味成功的喜悅,感受思維的奇異美、結構的對稱美、形式的簡潔美、數學的嚴謹美。

  三、教學重點和難點

  重點:等比數列的.前項和公式的推導及其簡單應用。

  難點:等比數列的前項和公式的推導。

  重難點確定的依據:從教材體系來看,它為后繼學習提供了知識基礎,具有承上啟下的作用;從知識本身特點來看,等比數列前n項和公式的推導方法和等差數列的的前n項和公式的推導方法可比性低,無法用類比的方法進行,它需要對等比數列的概念和性質能充分理解并融會貫通;從學生認知水平來看,學生的探究能力和用數學語言交流的能力還有待提高。

  四、教法學法分析

  通過創設問題情境,組織學生討論,讓學生在嘗試探索中不斷地發現問題,以激發學生的求知欲,并在過程中獲得自信心和成功感。強調知識的嚴謹性的同時重知識的形成過程,

  五、教學過程

  (一)創設情境,引入新知

  從故事入手:傳說,波斯國王下令要獎賞國際象棋的發明者,發明者對國王說,在棋盤的第一格內放上一粒麥子,在第二格內放兩粒麥子,第三格內放4粒,第四格內放8米,……按這樣的規律放滿64格棋盤格。結果是國王傾盡國家財力還不夠支付。同學們,這幾粒麥子,怎能會讓國王賠上整個國家的財力?

  關鍵就在于計算麥粒的總數。很明顯,這是一個以1為首項,以2為公比的等比數列前64項和的問題,即如何計算1+2+22+……+263?

  (二)師生討論、探究新知

  總結歸納:當q=1時,Sn=na1

  當q≠1時,

  公式說明:①對等比數列{an}而言,a1,an,Sn,n,q知三可求二②運用公式時要根據條件選取適當的公式,特別注意的是,在公比不知道的情況下要分類討論;③錯位相減的思想方法。

  (三)例題講解,形成技能

  例1:等比數列{an}中,

  ①已知a1=-4,q=1/2,求S10 ②已知a1=1,an=243,q=3,求Sn

  ③已知a1=2,S3=26,求q。

  通過例題一,滲透知三求二的思想。

  練習:求等比數列1,-1/2,1/4,-1/8,…,-1/512的各項的和。

  例2、等比數列{an}中,已知a1=3,S3=9,求q,an。

  練習:等比數列{an}中,若S3=7/2,S6=63/2,求an、S9。

  通過練習得出等比數列前項和的一個性質:成等比數列。

  例3:(1)求數列1+1/2,2+1/4,3+1/8,… n+,…的前n項和。

  首先由學生分析思路,觀察出這組數列的特點,它既不是等差數列,也不是等比數列,而是等差加等比。歸納出這類數列求和的方法。

  思考:求和:1+a+a2+a3+…+an

  (四)課堂小結

  以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法兩方面總結。

  『設計意圖:以此培養學生的口頭表達能力,歸納概括能力。』

  六、板書設計

  略

  七、課后記

  本節課的設計體現呢“以學生為主體,教師是課堂活動的組織者、引導者和參與者”的現代教育理念。在教學的每一個環節中軍設計了問題,始終以教師提出問題,引導學生解決問題的方式進行,讓課堂活動變得生動而愉悅。

3.4 等比數列 篇13

  教學設計示例

  課題:等比數列前 項和的公式

  教學目標 

  (1)通過教學使學生掌握等比數列前 項和公式的推導過程,并能初步運用這一方法求一些數列的前 項和.

  (2)通過公式的推導過程,培養學生猜想、分析、綜合能力,提高學生的數學素質.

  (3)通過教學進一步滲透從特殊到一般,再從一般到特殊的辯證觀點,培養學生嚴謹的學習態度.

  教學重點,難點

  教學重點是公式的推導及運用,難點是公式推導的思路.

  教學用具

  幻燈片,課件,電腦.

  教學方法

  引導發現法.

  教學過程 

  一、新課引入:

  (問題見教材第129頁)提出問題: (幻燈片)

  二、新課講解:

  記 ,式中有64項,后項與前項的比為公比2,當每一項都乘以2后,中間有62項是對應相等的,作差可以相互抵消.

  (板書)即 ,       ①

  ,      ②

  ②-①得 即 .

  由此對于一般的等比數列,其前 項和 ,如何化簡?

  (板書)等比數列前 項和公式

  仿照公比為2的等比數列求和方法,等式兩邊應同乘以等比數列的公比 ,即

  (板書) ③兩端同乘以 ,得

  ④,

  ③-④得 ⑤,(提問學生如何處理,適時提醒學生注意 的取值)

  當 時,由③可得 (不必導出④,但當時設想不到)

  當 時,由⑤得 .

  于是

  反思推導求和公式的方法——錯位相減法,可以求形如 的數列的和,其中 為等差數列, 為等比數列.

  (板書)例題:求和: .

  設 ,其中 為等差數列, 為等比數列,公比為 ,利用錯位相減法求和.

  解: ,

  兩端同乘以 ,得

  ,

  兩式相減得

  于是 .

  說明:錯位相減法實際上是把一個數列求和問題轉化為等比數列求和的問題.

  公式其它應用問題注意對公比的分類討論即可.

  三、小結:

  1.等比數列前 項和公式推導中蘊含的思想方法以及公式的應用;

  2.用錯位相減法求一些數列的前 項和.

  四、作業 :略.

  五、板書設計 :

  等比數列前 項和公式 例題

3.4 等比數列(精選13篇) 相關內容:
  • 等比數列

    教學目標 1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題. (1)正確理解的定義,了解公比的概念,明確一個數列是的限定條件,能根據定義判斷一個數列是,了解等比中項的概念; (2)正確認識使用的表示法,能靈活運用通項公...

  • 等比數列的前n項和教學設計(精選4篇)

    一、教材分析:等比數列的前n項和是高中數學必修五第二章第3、3節的內容。它是“等差數列的前n項和”與“等比數列”內容的延續。這部分內容授課時間2課時,本節課作為第一課時,重在研究等比數列的前n項和公式的推導及簡單應用,教學中注...

  • 3.5 等比數列的前n項和(通用13篇)

    教學目標1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題.(1)理解公式的推導過程,體會轉化的思想;(2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二;2.通過公式的靈活運用,進一步滲透方...

  • 3.5 等比數列的前n項和(通用9篇)

    教學目標1.把握等比數列前 項和公式,并能運用公式解決簡單的問題.(1)理解公式的推導過程,體會轉化的思想;(2)用方程的思想熟悉等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二;2.通過公式的靈活運用,進一步滲透方程的思想、...

  • 等差等比數列綜合問題

    教學目標 1.熟練運用等差、等比數列的概念、通項公式、前n項和式以及有關性質,分析和解決等差、等比數列的綜合問題. 2.突出方程思想的應用,引導學生選擇簡捷合理的運算途徑,提高運算速度和運算能力.教學重點與難點 用方程的觀點認識等...

  • 3.5 等比數列的前n項和(第一課時)

    教學目的:1.掌握等比數列的前n項和公式及公式證明思路.2.會用等比數列的前n項和公式解決有關等比數列的一些簡單問題。教學重點:等比數列的前n項和公式推導教學難點:靈活應用公式解決有關問題教學過程:一、復習等比數列的通項公式,有...

  • 等比數列的前n項和

    教學目標 1.把握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想熟悉等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲透方程的思...

  • 說課題目:等比數列的前n項和(第一課時)

    (選自人教版高中數學第一冊(上)第三章第五節)一、教材分析1.從在教材中的地位與作用來看《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過...

  • 3.5 等比數列的前n項和(第二課時)

    教學目的:1.會用等比數列的通項公式和前n項和公式解決有關等比數列的 中知道三個數求另外兩個數的一些簡單問題 2.提高分析、解決問題能力. 教學重點:進一步熟練掌握等比數列的通項公式和前n項和公式. 教學難點:靈活使用公式解決問題 教...

  • 等比數列教學實錄

    師:上節課我們對等差數列進行了復習,在數列中另一類重要的數列是什么?生:等比數列.師:我們這節課復習等比數列.(點課題并板書)通過課前預習,請同學們思考下列幾個問題:1.等比數列的定義.2.等比數列通項公式、前n項和公式.3.等比中項...

  • 上學期 3.5等比數列的前n項和

    教學設計示例課題:等比數列前 項和的公式教學目標 (1)通過教學使學生掌握等比數列前 項和公式的推導過程,并能初步運用這一方法求一些數列的前 項和. (2)通過公式的推導過程,培養學生猜想、分析、綜合能力,提高學生的數學素質. (...

  • 上學期 3.4等比數列

    教學目標 1.通過教學使學生理解等比數列的概念,推導并掌握通項公式. 2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力. 3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.教學重點,難點 重點、難點是等比數列的定義...

  • 等比數列的前n項和

    教學目標 1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲...

  • 等比數列的前n項和

    教學目標 1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲...

  • 等比數列的前n項和

    教學目標 1.掌握等比數列前 項和公式,并能運用公式解決簡單的問題. (1)理解公式的推導過程,體會轉化的思想; (2)用方程的思想認識等比數列前 項和公式,利用公式知三求一;與通項公式結合知三求二; 2.通過公式的靈活運用,進一步滲...

  • 高一數學教案
主站蜘蛛池模板: 91啦九色| 国产麻豆精品一区二区在线 | 狠狠色丁香婷婷综合久久图片 | 欧美一区二区三区精品免费 | 日韩精品第一页 | 欧美xxx视频| 亚洲午夜久久久影院 | 国产人澡人澡澡澡人碰视 | 男人扒开女人的腿做爽爽视频 | 黄色大片毛片 | 挺进长腿秘书的臀缝耸动小说 | 樱花视频在线观看进击的巨人第三季 | 亚洲AV蜜桃永久无码精品 | 亚洲精品国产精品乱码秒开 | 日日嗨av一区二区三区四区 | 亚洲AV最新天堂地址 | 日本高清一区免费中文视频 | 久久久久久久久久久亚洲 | 国产欧美日本在线 | 又色又爽又黄又免费看的视频 | 超碰在线播放97 | 亚洲影院在线 | 精品一区国产日韩视频在线 | AV无码免费一区二区三区 | 无限资源日本 | 日本不卡一二三区 | 亚洲国产成人久久三区 | 不卡中文一区 | 男人靠女人免费视频 | 国产成人自产拍免费视频 | 一级一片在线播放在线观看 | 亚洲不卡一区二区三区 | 免费观看一级视频 | 国产精品久久久亚洲一区 | 日韩一区二区三区无码免费视频 | 久久国产网| 亚洲黄色在线视频 | 国产精品亚洲欧美一区麻豆 | 91偷自产一区二区三区精品 | 两个人看的WWW在线观看 | 18禁男女无遮挡啪啪网站 |