一元一次方程和它的解法(精選10篇)
一元一次方程和它的解法 篇1
一、素質教育目標
(一)知識教學點
1.要求學生學會用移項解方程的方法.
2.使學生掌握移項變號的基本原則.
(二)能力訓練點
由移項變形方法的教學,培養學生由算術解法過渡到代數解法的解方程的基本能力.
(三)德育滲透點
用代數方法解方程中,滲透了數學中的化未知為已知的重要數學思想.
。ㄋ模┟烙凉B透點
用移項法解方程明顯比用前面的方法解方程方便,體現了數學的方法美.
二、學法引導
1.教學方法:采用引導發現法發現法則,課堂訓練體現學生的主體地位,引進競爭機制,調動課堂氣氛.
2.學生學法:練習→移項法制→練習
三、重點、難點、疑點及解決辦法
1.重點:移項法則的掌握.
2.難點:移項法解一元一次方程的步驟.
3.疑點:移項變號的掌握.
四、課時安排
3課時
五、教具學具準備
投影儀或電腦、自制膠片、復合膠片.
六、師生互動活動設計
教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創設情境,復習導入
師提出問題:上節課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節課的有關內容;回答下面問題.
(出示投影1)
利用等式的性質解方程
(1) ; (2) ;
解:方程的兩邊都加7, 解:方程的兩邊都減去 ,
得 , 得 ,
即 . 合并同類項得 .
【教法說明】通過上面兩小題,對用等式性質解方程進行鞏固、回憶,為講解新方法奠定基礎.
提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規律是什么?
。ǘ┨剿餍轮v授新課
投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規律,引出新知識.
。ǔ鍪就队2)
師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?
2.改變的項有什么變化?
學生活動:分學習小組討論,各組把討論的結果派代表上報教師,最好分四組,這樣節省時間.
師總結學生活動的結果:大家討論的結論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的 項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.
【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發現變化的規律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.
師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
。ㄈ﹪L試反饋,鞏固練習
師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.
學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.
【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.
對比練習:(出示投影3)
解方程:(1) ; (2) ;
(3) ; (4) .
學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.
師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)
【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.
鞏固練習:(出示投影4)
通過移項解下列方程,并寫出檢驗.
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成.
。ㄋ模┳兪接柧,培養能力
。ǔ鍪就队5)
口答:
1.下面的移項對不對?如果不對,錯在哪里?應怎樣改正?
(1)從 ,得到 ;
(2)從 ,得到 ;
(3)從 ,得到 ;
2.小明在解方程 時,是這樣寫的解題過程: ;
(1)小明這樣寫對不對?為什么?
(2)應該怎樣寫?
【教法說明】通過以上兩題進一步印證移項這種變形的規律,即“移項要變號”.要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數學模式.
。ǔ鍪就队6)
用移項解方程:
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題增加了難度,即移項變形是左右兩邊都有可移的項,教學時由學生思考后再進行解答書寫,可提醒學生先分組討論,各組由一名同學敘述解題過程,教師歸納出最嚴密最精煉的解題過程,最后全體學生都做這幾個題目.
學生活動:5分鐘競賽:規則是分兩大組,基礎分100分,每組同學全對1人加10分,不全對1人減10分,互相判題,學習委員記分.
。ǔ鍪就队7)
解下列方程:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6) .
【教法說明】這組題用競賽的形式,由學生獨立完成是為了培養學生的解方程的速度和能力,同時激發學生的競爭意識,從而達到調動全體學生參與的目的,而互相評判更增加了課堂上的民主意識.
。ㄎ澹w納小結
師:今天我們學習了解方程的變形方法,通過學習我們應該明確兩個方面的問題:①解方程需把方程中的項從一邊移到另一邊,移項要變號這是重點.②檢驗要把所得未知數的值代入原方程.
八、隨堂練習
1.判斷下列移項是否正確
(1)從 得 ( )
(2)從 得 ( )
(3)從 得 ( )
(4)從 得 ( )
2.選擇題
(1)對于方程 ,移項正確的是( )
A. B.
C. D.
(2)對于方程 移項正確的是( )
A. B.
C. D.
3.用移項法解方程,并寫出檢驗
(1) ;
(2) ;
(3) .
九、布置作業
課本第205頁A組1.(1)(3)(5).
十、板書設計
隨堂練習答案
1.× × × √
2.D C
3.略
作業 答案
(5)
解:移項得
合并同類項得
檢驗:略
探究活動
運動與學習成績
班里共有25個學生,其中17人會騎自行車,13人會游泳,8人會打籃球.全部掌握這三種運動項目的學生一個也沒有.在這25個學生中,有6人數學成績不及格.而參加以上運動的學生中,有2人數學成績優秀,沒有數學不及格的(學習成績分優秀、良好、及格、不及格).問:全班數學成績優秀的學生有幾名?既會游泳又會打籃球的有幾人?
參考答案:
全班數學成績及格的學生有25-6=19(人),參加運動的人次共有17+13+8=38,因沒有一個學生掌握三個運動項目,且數學沒有不及格的,所以參加運動的學生共19人.每人掌握兩個運動項目,19人中有17個會騎自行車,只有兩個學生同時會游泳又會打籃球.
參加運動的共19人,且數學成績全部及格,不參加運動的數學全不及格,所以全班數學成績優秀的學生只有2名.
一元一次方程和它的解法 篇2
教學目的
1、靈活運用解方程的步驟,正確而熟練的解一元一次方程。
2、通過解方程,培養學生的觀察能力和思維的靈活性。
教學分析
重點:靈活、正確而熟練的解一元一次方程。
難點:解方程的步驟的靈活運用。
突破:多做練習,多思考,多比較。
教學過程
一、復習
1、解方程 - =1,并說明解方程的一般步驟及每一步驟的依據。
二、新授
1、解一元一次方程,要掌握解題的一般步驟,但是,有的步驟可能用不上,可能不至用一次,也不一定按照自上而下的順序。我們只能根據題目來確定將其化為最簡形式的步驟,尋找解題的捷徑。
2、例題講解。
例1解方程 -(2x- )=
分析:每個分數分子的含有x項系數都能被分母整除,所以不用去分母,只要把分數化為x的一次二項式,然后一步步地解下去。
解:去括號,得
。2x+ =
再化成x+ -2x+x+ =x+
移項,得x-2x-x+ x =- -
合并同類項,得-x=-
系數化為1,得x=
例2、解方程 x- [x- (x-1)]= (x-1)(解略)
分析:多層括號,宜先去括號,后去分母。
例3、解方程 { [ (x-1)+1]+x}+1=3(解略)
分析:有多層括號,宜先去括號,后去分母,去括號一般是先去小括號,再去中括號,后去大括號。而這一題正好相反,反而好。
三、練習
P204練習:3。
四、小結
1、靈活對待一元一次方程解法的一般步驟。
五、作業 1、P208 A:16。
2、基礎訓練同步練習7。
一元一次方程和它的解法 篇3
教學目的
1、使學生明白以公式中的一個字母為未知數,其他字母為已知數,求這個未知數的問題要轉化為求以這個字母為未知數的一元一次方程的解。
教學分析
重點:求一個公式中的某一個字母的值。
難點:求一個公式中的某一個字母的值。
突破:把所給的公式看成是關于所求字母的一元一次方程。
教學過程
一、復習
1、x取什么值時,代數式x- (2+ x)- ( - )的值等于1。
依題意得:x- (2+ x)- ( - )=1,逐步解出x的值。
2、已知梯形的下底a=2.8cm,上底b=0.8cm,高h=1.5cm,利用梯形面積公式求這個梯形的面積S。(解略)
二、新授
1、導課
公式是兩個代數式用等號連接的式子,上面的2,是在已知等號的右邊的字母的值的條件下,通過求代數式的值求得面積S。如果知道了S及a,h的值,能否求出b的值呢?引導學生根據方程的意義,說出求b方法。
2、例題講解。
例1(課本P203例8)
在梯形的面積公式S= (a+b)h中,已S=120,b=18,h=8,求a。
分析:把S=120,b=18,h=8代入公式中,就得到了以a為未知數的方程,解這個一元一次方程即可求出a值。
解:(解略,見教材)
小結:在一般情況下,公式中的幾個字母中,會給出幾個字母的值,只有某一個不知道,這時把已經知道的字母的值代進去,即可得到一個一元一次方程,解此方程就能求出那個未知的字母的值了。
三、練習
P204練習:2。
四、小結
1、見上面的小結。
五、作業
1、P208 A:18,19。
2、基礎訓練同步練習8。
一元一次方程和它的解法 篇4
一、素質教育目標
。ㄒ唬┲R教學點
1.要求學生學會用移項解方程的方法.
2.使學生掌握移項變號的基本原則.
(二)能力訓練點
由移項變形方法的教學,培養學生由算術解法過渡到代數解法的解方程的基本能力.
(三)德育滲透點
用代數方法解方程中,滲透了數學中的化未知為已知的重要數學思想.
。ㄋ模┟烙凉B透點
用移項法解方程明顯比用前面的方法解方程方便,體現了數學的方法美.
二、學法引導
1.教學方法:采用引導發現法發現法則,課堂訓練體現學生的主體地位,引進競爭機制,調動課堂氣氛.
2.學生學法:練習→移項法制→練習
三、重點、難點、疑點及解決辦法
1.重點:移項法則的掌握.
2.難點:移項法解一元一次方程的步驟.
3.疑點:移項變號的掌握.
四、課時安排
3課時
五、教具學具準備
投影儀或電腦、自制膠片、復合膠片.
六、師生互動活動設計
教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創設情境,復習導入
師提出問題:上節課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節課的有關內容;回答下面問題.
(出示投影1)
利用等式的性質解方程
(1) ; (2) ;
解:方程的兩邊都加7, 解:方程的兩邊都減去 ,
得 , 得 ,
即 . 合并同類項得 .
【教法說明】通過上面兩小題,對用等式性質解方程進行鞏固、回憶,為講解新方法奠定基礎.
提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規律是什么?
。ǘ┨剿餍轮,講授新課
投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規律,引出新知識.
(出示投影2)
師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?
2.改變的項有什么變化?
學生活動:分學習小組討論,各組把討論的結果派代表上報教師,最好分四組,這樣節省時間.
師總結學生活動的結果:大家討論的結論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的 項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.
【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發現變化的規律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.
師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
。ㄈ﹪L試反饋,鞏固練習
師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.
學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.
【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.
對比練習:(出示投影3)
解方程:(1) ; (2) ;
(3) ; (4) .
學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.
師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)
【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.
鞏固練習:(出示投影4)
通過移項解下列方程,并寫出檢驗.
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成.
。ㄋ模┳兪接柧,培養能力
。ǔ鍪就队5)
口答:
1.下面的移項對不對?如果不對,錯在哪里?應怎樣改正?
(1)從 ,得到 ;
(2)從 ,得到 ;
(3)從 ,得到 ;
2.小明在解方程 時,是這樣寫的解題過程: ;
(1)小明這樣寫對不對?為什么?
(2)應該怎樣寫?
【教法說明】通過以上兩題進一步印證移項這種變形的規律,即“移項要變號”.要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數學模式.
第 1 2 頁
一元一次方程和它的解法 篇5
一、素質教育目標
。ㄒ唬┲R教學點
1.要求學生學會用移項解方程的方法.
2.使學生掌握移項變號的基本原則.
。ǘ┠芰τ柧汓c
由移項變形方法的教學,培養學生由算術解法過渡到代數解法的解方程的基本能力.
。ㄈ┑掠凉B透點
用代數方法解方程中,滲透了數學中的化未知為已知的重要數學思想.
(四)美育滲透點
用移項法解方程明顯比用前面的方法解方程方便,體現了數學的方法美.
二、學法引導
1.教學方法:采用引導發現法發現法則,課堂訓練體現學生的主體地位,引進競爭機制,調動課堂氣氛.
2.學生學法:練習→移項法制→練習
三、重點、難點、疑點及解決辦法
1.重點:移項法則的掌握.
2.難點:移項法解一元一次方程的步驟.
3.疑點:移項變號的掌握.
四、課時安排
3課時
五、教具學具準備
投影儀或電腦、自制膠片、復合膠片.
六、師生互動活動設計
教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
。ㄒ唬﹦撛O情境,復習導入
師提出問題:上節課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節課的有關內容;回答下面問題.
。ǔ鍪就队1)
利用等式的性質解方程
(1) ; (2) ;
解:方程的兩邊都加7, 解:方程的兩邊都減去 ,
得 , 得 ,
即 . 合并同類項得 .
【教法說明】通過上面兩小題,對用等式性質解方程進行鞏固、回憶,為講解新方法奠定基礎.
提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規律是什么?
。ǘ┨剿餍轮,講授新課
投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規律,引出新知識.
。ǔ鍪就队2)
師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?
2.改變的項有什么變化?
學生活動:分學習小組討論,各組把討論的結果派代表上報教師,最好分四組,這樣節省時間.
師總結學生活動的結果:大家討論的結論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的 項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.
【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發現變化的規律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.
師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
(三)嘗試反饋,鞏固練習
師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.
學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.
【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.
對比練習:(出示投影3)
解方程:(1) ; (2) ;
(3) ; (4) .
學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.
師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)
【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.
鞏固練習:(出示投影4)
通過移項解下列方程,并寫出檢驗.
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成.
。ㄋ模┳兪接柧殻囵B能力
。ǔ鍪就队5)
口答:
1.下面的移項對不對?如果不對,錯在哪里?應怎樣改正?
(1)從 ,得到 ;
(2)從 ,得到 ;
(3)從 ,得到 ;
2.小明在解方程 時,是這樣寫的解題過程: ;
(1)小明這樣寫對不對?為什么?
(2)應該怎樣寫?
【教法說明】通過以上兩題進一步印證移項這種變形的規律,即“移項要變號”.要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數學模式.
。ǔ鍪就队6)
用移項解方程:
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題增加了難度,即移項變形是左右兩邊都有可移的項,教學時由學生思考后再進行解答書寫,可提醒學生先分組討論,各組由一名同學敘述解題過程,教師歸納出最嚴密最精煉的解題過程,最后全體學生都做這幾個題目.
學生活動:5分鐘競賽:規則是分兩大組,基礎分100分,每組同學全對1人加10分,不全對1人減10分,互相判題,學習委員記分.
(出示投影7)
解下列方程:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6) .
【教法說明】這組題用競賽的形式,由學生獨立完成是為了培養學生的解方程的速度和能力,同時激發學生的競爭意識,從而達到調動全體學生參與的目的,而互相評判更增加了課堂上的民主意識.
。ㄎ澹w納小結
師:今天我們學習了解方程的變形方法,通過學習我們應該明確兩個方面的問題:①解方程需把方程中的項從一邊移到另一邊,移項要變號這是重點.②檢驗要把所得未知數的值代入原方程.
八、隨堂練習
1.判斷下列移項是否正確
(1)從 得 ( )
(2)從 得 ( )
(3)從 得 ( )
(4)從 得 ( )
2.選擇題
(1)對于方程 ,移項正確的是( )
A. B.
C. D.
(2)對于方程 移項正確的是( )
A. B.
C. D.
3.用移項法解方程,并寫出檢驗
(1) ;
(2) ;
(3) .
九、布置作業
課本第205頁A組1.(1)(3)(5).
十、板書設計
隨堂練習答案
1.× × × √
2.D C
3.略
作業 答案
(5)
解:移項得
合并同類項得
檢驗:略
探究活動
運動與學習成績
班里共有25個學生,其中17人會騎自行車,13人會游泳,8人會打籃球.全部掌握這三種運動項目的學生一個也沒有.在這25個學生中,有6人數學成績不及格.而參加以上運動的學生中,有2人數學成績優秀,沒有數學不及格的(學習成績分優秀、良好、及格、不及格).問:全班數學成績優秀的學生有幾名?既會游泳又會打籃球的有幾人?
參考答案:
全班數學成績及格的學生有25-6=19(人),參加運動的人次共有17+13+8=38,因沒有一個學生掌握三個運動項目,且數學沒有不及格的,所以參加運動的學生共19人.每人掌握兩個運動項目,19人中有17個會騎自行車,只有兩個學生同時會游泳又會打籃球.
參加運動的共19人,且數學成績全部及格,不參加運動的數學全不及格,所以全班數學成績優秀的學生只有2名.
一元一次方程和它的解法 篇6
一、素質教育目標
。ㄒ唬┲R教學點
1.要求學生學會用移項解方程的方法.
2.使學生掌握移項變號的基本原則.
。ǘ┠芰τ柧汓c
由移項變形方法的教學,培養學生由算術解法過渡到代數解法的解方程的基本能力.
。ㄈ┑掠凉B透點
用代數方法解方程中,滲透了數學中的化未知為已知的重要數學思想.
。ㄋ模┟烙凉B透點
用移項法解方程明顯比用前面的方法解方程方便,體現了數學的方法美.
二、學法引導
1.教學方法:采用引導發現法發現法則,課堂訓練體現學生的主體地位,引進競爭機制,調動課堂氣氛.
2.學生學法:練習→移項法制→練習
三、重點、難點、疑點及解決辦法
1.重點:移項法則的掌握.
2.難點:移項法解一元一次方程的步驟.
3.疑點:移項變號的掌握.
四、課時安排
3課時
五、教具學具準備
投影儀或電腦、自制膠片、復合膠片.
六、師生互動活動設計
教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創設情境,復習導入
師提出問題:上節課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節課的有關內容;回答下面問題.
(出示投影1)
利用等式的性質解方程
(1) ; (2) ;
解:方程的兩邊都加7, 解:方程的兩邊都減去 ,
得 , 得 ,
即 . 合并同類項得 .
【教法說明】通過上面兩小題,對用等式性質解方程進行鞏固、回憶,為講解新方法奠定基礎.
提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規律是什么?
。ǘ┨剿餍轮,講授新課
投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規律,引出新知識.
。ǔ鍪就队2)
師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?
2.改變的項有什么變化?
學生活動:分學習小組討論,各組把討論的結果派代表上報教師,最好分四組,這樣節省時間.
師總結學生活動的結果:大家討論的結論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的 項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.
【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發現變化的規律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.
師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
(三)嘗試反饋,鞏固練習
師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.
學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.
【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.
對比練習:(出示投影3)
解方程:(1) ; (2) ;
(3) ; (4) .
學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.
師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)
【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.
鞏固練習:(出示投影4)
通過移項解下列方程,并寫出檢驗.
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成.
。ㄋ模┳兪接柧殻囵B能力
。ǔ鍪就队5)
口答:
1.下面的移項對不對?如果不對,錯在哪里?應怎樣改正?
(1)從 ,得到 ;
(2)從 ,得到 ;
(3)從 ,得到 ;
2.小明在解方程 時,是這樣寫的解題過程: ;
(1)小明這樣寫對不對?為什么?
(2)應該怎樣寫?
【教法說明】通過以上兩題進一步印證移項這種變形的規律,即“移項要變號”.要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數學模式.
。ǔ鍪就队6)
用移項解方程:
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題增加了難度,即移項變形是左右兩邊都有可移的項,教學時由學生思考后再進行解答書寫,可提醒學生先分組討論,各組由一名同學敘述解題過程,教師歸納出最嚴密最精煉的解題過程,最后全體學生都做這幾個題目.
學生活動:5分鐘競賽:規則是分兩大組,基礎分100分,每組同學全對1人加10分,不全對1人減10分,互相判題,學習委員記分.
(出示投影7)
解下列方程:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6) .
【教法說明】這組題用競賽的形式,由學生獨立完成是為了培養學生的解方程的速度和能力,同時激發學生的競爭意識,從而達到調動全體學生參與的目的,而互相評判更增加了課堂上的民主意識.
。ㄎ澹w納小結
師:今天我們學習了解方程的變形方法,通過學習我們應該明確兩個方面的問題:①解方程需把方程中的項從一邊移到另一邊,移項要變號這是重點.②檢驗要把所得未知數的值代入原方程.
八、隨堂練習
1.判斷下列移項是否正確
(1)從 得 ( )
(2)從 得 ( )
(3)從 得 ( )
(4)從 得 ( )
2.選擇題
(1)對于方程 ,移項正確的是( )
A. B.
C. D.
(2)對于方程 移項正確的是( )
A. B.
C. D.
3.用移項法解方程,并寫出檢驗
(1) ;
(2) ;
(3) .
九、布置作業
課本第205頁A組1.(1)(3)(5).
十、板書設計
隨堂練習答案
1.× × × √
2.D C
3.略
作業 答案
(5)
解:移項得
合并同類項得
檢驗:略
探究活動
運動與學習成績
班里共有25個學生,其中17人會騎自行車,13人會游泳,8人會打籃球.全部掌握這三種運動項目的學生一個也沒有.在這25個學生中,有6人數學成績不及格.而參加以上運動的學生中,有2人數學成績優秀,沒有數學不及格的(學習成績分優秀、良好、及格、不及格).問:全班數學成績優秀的學生有幾名?既會游泳又會打籃球的有幾人?
參考答案:
全班數學成績及格的學生有25-6=19(人),參加運動的人次共有17+13+8=38,因沒有一個學生掌握三個運動項目,且數學沒有不及格的,所以參加運動的學生共19人.每人掌握兩個運動項目,19人中有17個會騎自行車,只有兩個學生同時會游泳又會打籃球.
參加運動的共19人,且數學成績全部及格,不參加運動的數學全不及格,所以全班數學成績優秀的學生只有2名.
一元一次方程和它的解法 篇7
教學目的:掌握移項法則,并能利用移項法則準確
迅速地解一元一次方程
教學重點:移項法則
教學難點 :通過引例歸納移項法則
教學過程 :一、復習提問
1、什么叫等式的性質?
2、什么叫方程?
二、新課:
導語 :從這節課開始學習和研究,在沒有具體學習之前,我們先來通過簡單的例子引入一種重要的變形,請同學們先看下面的例子:
解方程①x-7=5
、7x=6x-4
學生敘述,教師板書:
解:①x-7=5 ②7x=6x-4
x-7+7=5+7 7x-6x =6x-6x-4
x=5+7 7x-6x =-4
x=12 x=-4
導語 :
剛才我們在解方程過程中,有兩組重要的等式:它們是(教師出示小黑板上的兩組等式)
x-7=5 ① 7x =6x –4 ③
x=5+7 ② 7x-6x =-4 ④
下面我們來分析和研究這兩組等式,先請同學們觀察第一組等式,思考下面的問題:
、庞傻仁舰僮冃蔚降仁舰诘母鶕鞘裁?
⑵由等式①變形到等式②哪幾項的位置明顯沒有變化?哪一項的位置發生了變化?已知項-7變化前在方程的哪一邊?變化后在方程的哪一邊?
、钦埻瑢W們再仔細觀察一下這組等式?已知項-7除去位置發生了變化外,還有沒有其它變化?是怎樣變化的?
教師小結:由上面的分析和研究可以看出,已知項-7不僅位置發生了變化,而且符號也發生了變化。
⑷請一位同學再完整地說一下由等式①變形到等式②,已知項-7是怎樣變化的?
導語 :我們再來觀察第二組等式,請同學們想一想由等式③變形到等式④是否也有類似的變化?哪位同學說一說未知項6x是怎樣變化的?請一位同學再完整地說一下這兩組等式中的已知項-7和未知項6x是怎樣變化的?
教師導語 :我們把這兩種變形都叫做移項,請一位同學總結一下,什么叫移項?(學生口述,教師板書)
移項的定義:把方程的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項。
下面我們來熟悉一下移項的定義:
、乓祈椂x中“從方程的一邊移到另一邊”是指哪兩種移動方式?
教師小結:未知項常常移到方程的左邊,常數項常常移到方程的右邊,
、圃谝祈棔r要特別注意什么的變化?
三、下面我們利用移項來解方程
例1、利用移項解下列方程,并寫出檢驗:
3x-3=2x-6
分析:請同學們觀察這個方程,為了求得未知數x我們應如何移項(學生口述,教師板書)
解:移項,得 3x-2x=-6+3
合并同類項,得 x=-3
檢驗:把x=-3代入方程的左邊和右邊:
左邊=3×(-3)-3=-9-3=-12
右邊=2×(-3)-6=-6-6=-12
∵左邊=右邊
∴x=-3是原方程的解
解題小結:
1、突出用移項解方程的優越性。
2、歸納目前解方程的兩個步驟。
例2下面的變形對不對?如果不對?錯在哪里?應當怎樣改正?(投影片上)
①從等式5x=4x+8,得到5x-4x=8
②從等式7+x=13,得到x=13-7
、蹚牡仁3x-2=x+1,得到3x-x=1+2
、軓牡仁8x=7x-2,得到8x+7x=2
、輳牡仁剑3+4x=5x+3-2x,得到4x-3=5x-2x+3
解題小結:⑴由①—④小題強調移項要變號。
⑵由⑤小題歸納移項與在方程的一邊交換項的位置有本質的區別。
四、學生練習:P194 2T,1T, 3T。
五、課堂小結:①移項法則及注意的問題
、谀壳敖夥匠痰膬蓚步聚
六、課堂作業 :P205 1T ①—⑥
一元一次方程和它的解法 篇8
一、素質教育目標
(一)知識教學點
1.要求學生學會用移項解方程的方法.
2.使學生掌握移項變號的基本原則.
(二)能力訓練點
由移項變形方法的教學,培養學生由算術解法過渡到代數解法的解方程的基本能力.
。ㄈ┑掠凉B透點
用代數方法解方程中,滲透了數學中的化未知為已知的重要數學思想.
。ㄋ模┟烙凉B透點
用移項法解方程明顯比用前面的方法解方程方便,體現了數學的方法美.
二、學法引導
1.教學方法:采用引導發現法發現法則,課堂訓練體現學生的主體地位,引進競爭機制,調動課堂氣氛.
2.學生學法:練習→移項法制→練習
三、重點、難點、疑點及解決辦法
1.重點:移項法則的掌握.
2.難點:移項法解一元一次方程的步驟.
3.疑點:移項變號的掌握.
四、課時安排
3課時
五、教具學具準備
投影儀或電腦、自制膠片、復合膠片.
六、師生互動活動設計
教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創設情境,復習導入
師提出問題:上節課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節課的有關內容;回答下面問題.
。ǔ鍪就队1)
利用等式的性質解方程
(1) ; (2) ;
解:方程的兩邊都加7, 解:方程的兩邊都減去 ,
得 , 得 ,
即 . 合并同類項得 .
【教法說明】通過上面兩小題,對用等式性質解方程進行鞏固、回憶,為講解新方法奠定基礎.
提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規律是什么?
。ǘ┨剿餍轮,講授新課
投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規律,引出新知識.
(出示投影2)
師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?
2.改變的項有什么變化?
學生活動:分學習小組討論,各組把討論的結果派代表上報教師,最好分四組,這樣節省時間.
師總結學生活動的結果:大家討論的結論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的 項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.
【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發現變化的規律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.
師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
。ㄈ﹪L試反饋,鞏固練習
師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.
學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.
【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.
對比練習:(出示投影3)
解方程:(1) ; (2) ;
(3) ; (4) .
學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.
師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)
【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.
鞏固練習:(出示投影4)
通過移項解下列方程,并寫出檢驗.
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成.
(四)變式訓練,培養能力
(出示投影5)
口答:
1.下面的移項對不對?如果不對,錯在哪里?應怎樣改正?
(1)從 ,得到 ;
(2)從 ,得到 ;
(3)從 ,得到 ;
2.小明在解方程 時,是這樣寫的解題過程: ;
(1)小明這樣寫對不對?為什么?
(2)應該怎樣寫?
【教法說明】通過以上兩題進一步印證移項這種變形的規律,即“移項要變號”.要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數學模式.
(出示投影6)
用移項解方程:
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題增加了難度,即移項變形是左右兩邊都有可移的項,教學時由學生思考后再進行解答書寫,可提醒學生先分組討論,各組由一名同學敘述解題過程,教師歸納出最嚴密最精煉的解題過程,最后全體學生都做這幾個題目.
學生活動:5分鐘競賽:規則是分兩大組,基礎分100分,每組同學全對1人加10分,不全對1人減10分,互相判題,學習委員記分.
。ǔ鍪就队7)
解下列方程:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6) .
【教法說明】這組題用競賽的形式,由學生獨立完成是為了培養學生的解方程的速度和能力,同時激發學生的競爭意識,從而達到調動全體學生參與的目的,而互相評判更增加了課堂上的民主意識.
(五)歸納小結
師:今天我們學習了解方程的變形方法,通過學習我們應該明確兩個方面的問題:①解方程需把方程中的項從一邊移到另一邊,移項要變號這是重點.②檢驗要把所得未知數的值代入原方程.
八、隨堂練習
1.判斷下列移項是否正確
(1)從 得 ( )
(2)從 得 ( )
(3)從 得 ( )
(4)從 得 ( )
2.選擇題
(1)對于方程 ,移項正確的是( )
A. B.
C. D.
(2)對于方程 移項正確的是( )
A. B.
C. D.
3.用移項法解方程,并寫出檢驗
(1) ;
(2) ;
(3) .
九、布置作業
課本第205頁A組1.(1)(3)(5).
十、板書設計
隨堂練習答案
1.× × × √
2.D C
3.略
作業 答案
(5)
解:移項得
合并同類項得
檢驗:略
探究活動
運動與學習成績
班里共有25個學生,其中17人會騎自行車,13人會游泳,8人會打籃球.全部掌握這三種運動項目的學生一個也沒有.在這25個學生中,有6人數學成績不及格.而參加以上運動的學生中,有2人數學成績優秀,沒有數學不及格的(學習成績分優秀、良好、及格、不及格).問:全班數學成績優秀的學生有幾名?既會游泳又會打籃球的有幾人?
參考答案:
全班數學成績及格的學生有25-6=19(人),參加運動的人次共有17+13+8=38,因沒有一個學生掌握三個運動項目,且數學沒有不及格的,所以參加運動的學生共19人.每人掌握兩個運動項目,19人中有17個會騎自行車,只有兩個學生同時會游泳又會打籃球.
參加運動的共19人,且數學成績全部及格,不參加運動的數學全不及格,所以全班數學成績優秀的學生
有2名.
一元一次方程和它的解法 篇9
一、素質教育目標
(一)知識教學點
1.要求學生學會用移項解方程的方法.
2.使學生掌握移項變號的基本原則.
。ǘ┠芰τ柧汓c
由移項變形方法的教學,培養學生由算術解法過渡到代數解法的解方程的基本能力.
。ㄈ┑掠凉B透點
用代數方法解方程中,滲透了數學中的化未知為已知的重要數學思想.
。ㄋ模┟烙凉B透點
用移項法解方程明顯比用前面的方法解方程方便,體現了數學的方法美.
二、學法引導
1.教學方法:采用引導發現法發現法則,課堂訓練體現學生的主體地位,引進競爭機制,調動課堂氣氛.
2.學生學法:練習→移項法制→練習
三、重點、難點、疑點及解決辦法
1.重點:移項法則的掌握.
2.難點:移項法解一元一次方程的步驟.
3.疑點:移項變號的掌握.
四、課時安排
3課時
五、教具學具準備
投影儀或電腦、自制膠片、復合膠片.
六、師生互動活動設計
教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.
七、教學步驟
(一)創設情境,復習導入
師提出問題:上節課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節課的有關內容;回答下面問題.
。ǔ鍪就队1)
利用等式的性質解方程
(1) ; (2) ;
解:方程的兩邊都加7, 解:方程的兩邊都減去 ,
得 , 得 ,
即 . 合并同類項得 .
【教法說明】通過上面兩小題,對用等式性質解方程進行鞏固、回憶,為講解新方法奠定基礎.
提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規律是什么?
。ǘ┨剿餍轮,講授新課
投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規律,引出新知識.
。ǔ鍪就队2)
師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?
2.改變的項有什么變化?
學生活動:分學習小組討論,各組把討論的結果派代表上報教師,最好分四組,這樣節省時間.
師總結學生活動的結果:大家討論的結論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的 項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.
【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發現變化的規律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.
師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
。ㄈ﹪L試反饋,鞏固練習
師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.
學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.
【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.
對比練習:(出示投影3)
解方程:(1) ; (2) ;
(3) ; (4) .
學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.
師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)
【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.
鞏固練習:(出示投影4)
通過移項解下列方程,并寫出檢驗.
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成.
。ㄋ模┳兪接柧,培養能力
。ǔ鍪就队5)
口答:
1.下面的移項對不對?如果不對,錯在哪里?應怎樣改正?
(1)從 ,得到 ;
(2)從 ,得到 ;
(3)從 ,得到 ;
2.小明在解方程 時,是這樣寫的解題過程: ;
(1)小明這樣寫對不對?為什么?
(2)應該怎樣寫?
【教法說明】通過以上兩題進一步印證移項這種變形的規律,即“移項要變號”.要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數學模式.
(出示投影6)
用移項解方程:
(1) ; (2) ;
(3) ; (4) .
【教法說明】這組題增加了難度,即移項變形是左右兩邊都有可移的項,教學時由學生思考后再進行解答書寫,可提醒學生先分組討論,各組由一名同學敘述解題過程,教師歸納出最嚴密最精煉的解題過程,最后全體學生都做這幾個題目.
學生活動:5分鐘競賽:規則是分兩大組,基礎分100分,每組同學全對1人加10分,不全對1人減10分,互相判題,學習委員記分.
。ǔ鍪就队7)
解下列方程:
(1) ; (2) ; (3) ;
(4) ; (5) ; (6) .
【教法說明】這組題用競賽的形式,由學生獨立完成是為了培養學生的解方程的速度和能力,同時激發學生的競爭意識,從而達到調動全體學生參與的目的,而互相評判更增加了課堂上的民主意識.
。ㄎ澹w納小結
師:今天我們學習了解方程的變形方法,通過學習我們應該明確兩個方面的問題:①解方程需把方程中的項從一邊移到另一邊,移項要變號這是重點.②檢驗要把所得未知數的值代入原方程.
八、隨堂練習
1.判斷下列移項是否正確
(1)從 得 ( )
(2)從 得 ( )
(3)從 得 ( )
(4)從 得 ( )
2.選擇題
(1)對于方程 ,移項正確的是( )
A. B.
C. D.
(2)對于方程 移項正確的是( )
A. B.
C. D.
3.用移項法解方程,并寫出檢驗
(1) ;
(2) ;
(3) .
九、布置作業
課本第205頁A組1.(1)(3)(5).
十、板書設計
隨堂練習答案
1.× × × √
2.D C
3.略
作業 答案
(5)
解:移項得
合并同類項得
檢驗:略
探究活動
運動與學習成績
班里共有25個學生,其中17人會騎自行車,13人會游泳,8人會打籃球.全部掌握這三種運動項目的學生一個也沒有.在這25個學生中,有6人數學成績不及格.而參加以上運動的學生中,有2人數學成績優秀,沒有數學不及格的(學習成績分優秀、良好、及格、不及格).問:全班數學成績優秀的學生有幾名?既會游泳又會打籃球的有幾人?
參考答案:
全班數學成績及格的學生有25-6=19(人),參加運動的人次共有17+13+8=38,因沒有一個學生掌握三個運動項目,且數學沒有不及格的,所以參加運動的學生共19人.每人掌握兩個運動項目,19人中有17個會騎自行車,只有兩個學生同時會游泳又會打籃球.
參加運動的共19人,且數學成績全部及格,不參加運動的數學全不及格,所以全班數學成績優秀的學生只有2名.
一元一次方程和它的解法 篇10
教學目的
1、使學生鞏固等式與方程的概念。
2、使學生掌握等式的性質和靈活掌握一元一次方程的解法,培養學生求解方程的計算能力。
教學分析
重點:熟練掌握一元一次方程的解法。
難點:靈活地運用一元一次方程的解法步驟,計算簡化而準確。
突破:多練習,多比較,多思考。
教學過程
一、復習
1、什么是一元一次方程?一元一次方程的標準形式是什么?它的解是什么?
2、等式的性質是什么?(要求說出應注意的兩點)
3、解一元一次方程的基本步驟是什么?
以解方程 -2x+ = 為例,說明解一元一次方程的基本步驟與注意點,并口頭檢驗。
二、新授
1、已知方程(n+1)x|n|=1是關于x的一元一次方程,求n的值。
分析:根據一元一次方程的定義,得|n|=1且n+1≠0,解得n=1。
解:略
2、下列說法中,正確的是( )。
A -3x=0的解是x=-3
B - x+1=4的解為x=-
C -1= 的解是x=1
D x2-x-2=0的解是x=2, x=-1(D正確)
3、x等于什么數時,代數式 x+5的值比 的值小2。
解:(解略,應根據題目的意思列出方程。)
4、根據下列條件列出方程,并求出方程的解。
。1) 某數x的3倍減去9,等于某數的3分之1加上6;
。2) 已知-3m3(x-2)n與25m2+xn是同類項,求x的值;
(3) 已知代數式2[(x-1)+5]+x+1與代數式3[x-8(x-4)]+7的值互為相反數,求x的值。
5根據下列方程的特點解方程。
。}目見課本中P208、16的2,4)
三、練習
P209習題:20。
四、小結
1、略。
五、作業
1、P240 A:1,2,3,4。
2、B:1,2。