《圓錐的體積》教案
教學目標:
1、讓學生掌握圓錐體積的計算方法,并能運用公式計算圓錐的體積,解決簡單的實際問題。
2、通過動手操作實驗,使學生經歷圓錐體積公式的推導過程。
3、在觀察與分析、操作與實驗的學習活動中培養學生主動探究問題和空間想象能力。
教學重點、難點: 掌握圓錐體積公式。
教具使用: 課件,等底等高長方形、三角形彩紙,等底等高圓錐、圓柱教具,水。
教學過程:
一、創設情境,問題導入
1、師出示長方形、三角形紙各一張。
提問:等底等高的長方形與三角形面積有什么關系?
2、提問:旋轉長方形,三角形各得到什么圖形?
長方形沿著長旋轉一周得到圓柱、直角三角形沿一條直角邊旋轉一周形成圓錐。
3、觀察。旋轉后得到的圓柱和圓錐你有什么發現?(等底等高)
4、猜想。旋轉后得到的圓錐的體積與圓柱的體積又有怎樣的關系?
二、探究新知
1、實驗
師出示:等底等高的圓柱、圓錐學具、水。
師:現在我們就要做一個實驗,看看圓柱和圓錐的體積有什么關系?
生動手實驗:
預設方案:①先灌滿圓錐,3次倒入圓柱
②先灌滿圓柱,3次倒入圓錐
2、生演示匯報
師板書:圓錐的體積 等于 圓柱體積的
質疑:
追問:是否同意上面的結論。引導學生說出:和它等底等高補充板書。
3、小結操作過程,課件演示。
4、推導公式。讓生說圓錐的體積用字母如何來表示?
v錐= sh= πr2h
三、實際應用
(1)、一個圓錐形的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
生獨立完成,師巡視,生板書。
強調:1912 是與圓錐等底等高圓柱的體積,再乘
1912=73(立方厘米)
(2)、在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.5米。每立方米小麥約重750千克,這堆小麥約有多少千克?
生獨立完成,師巡視,生板書
(4÷2)23.141.5=6.28(立方米)
6.28750=4710(千克)
3、填空
⑴一個圓錐的底面積是12平方厘米,高是6厘米,它的體積是( )立方厘米。
⑵一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是( )立方分米。
⑶一個圓錐比與它等底等高的圓柱體積少12立方厘米,圓柱體積是( )立方厘米。
4、判斷:
⑴圓柱一定比圓錐體的體積大。( )
⑵圓錐的體積等于和它等底等高的圓柱體積的 。 ( )
⑶正方體、長方體、圓錐體的體積都等于底面積高。( )
⑷等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。( )
四、拓展提高
有一根底面直徑是6厘米,長是15厘米的圓柱體鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?
法一:(v柱 -v錐) (6÷2)23.1415- (6÷2)23.1415=282.6(立方厘米)
法二:( v柱) (6÷2)23.1415=282.6(立方厘米)
五、課堂小結:這節課你有哪些收獲?