《圓錐的體積》教學實錄(精選15篇)
《圓錐的體積》教學實錄 篇1
(一)教學過程及學生活動情況
一、引入(2分鐘)
教師:我們在第一單元中認識了一個新的立體圖形----圓錐。不知道大家是否還記得圓錐是由什么圖形旋轉而成的?是直角三角形。圓錐有什么特點?一個頂點,一條高,底面是圓,頂點到底面圓的圓心的距離叫做高。今天這節課,我們繼續學習有關圓錐的知識,一起來探討“圓錐的體積”怎么求(板書課題)
學生:直角三角形
二、探究新知(20分鐘)
教師:我們學過哪些立體圖形的體積啊?
學生:長方體、正方體、圓柱。
教師:他們和圓錐有什么不同?
學生:長方體、正方體、圓柱上下形狀相同,圓錐不同。
教師:他們的體積是怎么求的?
學生:底面積*高。
教師:那圓錐的體積會不會也是底面積*高?為什么?
學生:不會,圓錐上下形狀不一樣。
教師:看來,我們需要找到圓錐和什么圖形的體積關系才行。
教師:大家請看我手中的這個圓錐,我們知道圓錐的底面是一個圓,請同學們想一想,我們學過的什么立體圖形的底面也是圓啊?
學生:是圓柱。
教師:現在老師這里有一個圓柱和圓錐,你們觀察這兩個模型,有什么相同點?底面有什么相同點?(形狀,大小)高有什么相同點?
學生:底面都是圓,圓柱和圓錐的高和底面相等。
教師:是不是相等,還需要同學們想辦法比一比。這兩個模型有這么多的相同點,那它們的體積會不會有什么關系呢?同學們覺得這兩個模型哪一個的體積更大?為什么?
學生:圓柱,圓錐上面是尖的。
教師:這里有一盆水,如果我們把圓錐裝滿水,水的體積是不是圓錐的體積,如果我們把圓柱裝滿水,水的體積是不是就是圓柱的體積。因此要知道他們的體積關系就是找他們能裝的水的體積關系,大家猜一猜用圓錐裝水倒入圓柱,幾次可以倒滿?
學生:2次,3次。
教師:到底多少次就請同學們自己做一做。
學生:用等底等高的圓柱和圓錐進行小組合作實驗并完成“實驗情況記載表。推出公式為圓錐的體積*3=圓柱的體積。
教師:通過剛才的實驗,我們知道圓柱所裝的水是圓錐所裝的三倍,也就是說,圓錐所裝的水是圓柱的 。那圓錐的體積等于圓柱體積的 。
教師:為什么我們不用長方體來做實驗?
答:把圓轉化成面積相等的其他圖形很麻煩,數學就是為了簡便。
教師:大家剛剛都做的很認真,但還不夠準確,請再看一遍老師的演示。(寫板書)
圓錐體積= 圓柱體積(等底等高)
圓錐體積= 底面積高
v圓錐= sh
三、實際應用(18分鐘)
1、圓錐的體積是圓柱的 。( )
學生:對的
老師:(拿出一個很小的圓錐模型與圓柱模型讓學生比較)他們兩個還成這樣的關系嗎?
學生:不成。圓錐很小,圓柱很大。
教師:那我們要加上什么條件這句話才對啊?
學生:等底等高
2、如果小麥堆的底面半徑為2米,高為1.5米。你能計算出小麥堆的體積嗎?
教師:題目告訴了我們什么條件,問題是什么?
學生:告訴了小麥堆的底面半徑和高,求小麥堆的體積。
教師:小麥堆是什么形狀?
學生:圓錐
教師:要求體積需要什么條件?
學生:底面積和高
教師:底面積和高知道么?
學生:底面積不知道
教師:知道什么,可以求出底面積嗎?
學生:知道半徑,可以求出。
教師:請同學們試著做一下。
學生:解:v= sh= *3.14*22*1.5
教師:注意運用乘法交換率。
《圓錐的體積》教學實錄 篇2
多媒體演示1:
(一個長方形,上面的一邊漸漸變短,直到變成三角形)
師: 剛才你看到多媒體屏幕上出現了什么樣的動畫?
生: 我看到了一個長方形逐漸變成了三角形.
師: 你看到的三角形和原來的長方形有什么關系?
生1: 它們是等底等高的關系.
生2: 它們面積的關系是倍數關系,正好兩倍.
生3: 長方形的面積是三角形面積的兩倍,三角形面積是長方形面積的.
生4, 等底等高的長方形的面積是三角形面積的兩倍, 等底等高的三角形面積是長方形面積的.
師: 很好,你們真會動腦筋,我們來在看一個動畫.
多媒體演示2:
(圓柱體的上底面越來越小,直到縮成一點變成一個圓錐)
師: 這回你看到了什么?你猜想一下其中有什么知識和規律在里面?
生1: 我看到一個圓柱體的上底面越來越小,直到縮成一點.
生2: 圓柱體變成了圓錐體.
生3: 我想圓錐體積和圓柱的體積一定有某種關系.
生4: 圓柱體的體積是錐體的體積的兩倍,就和等底等高的長方形的面積是三角形面積的兩倍一樣.
生5: 它們是等底等高的關系.
生6: 圓柱體的體積不是錐體的體積的兩倍,而是三倍.
生7: 圓柱體的體積和錐體的體積既不是兩倍關系,也不是三倍關系.而是其它的關系.
師: 同學們真會動腦筋,那么剛才同學們的想法哪些是對的,哪些是錯的呢?同學們討論一下.注意:把肯定正確的想法和有爭論的想法分開討論.
(生匯報:
正確的有: “我想圓錐體積和圓柱的體積一定有某種關系.” “它們是等底等高的關系.”有爭論的有: “圓柱體的體積是錐體的體積的兩倍,” “圓柱體的體積不是錐體的體積的兩倍,而是三倍.”)
師: 同學們真是太聰明了,一下子就把正確的觀點找了出來,大家能不能再開動腦筋想一想,對于兩種不同的認識,你有沒有一個好的方法來進行驗證呢?
(學生進行討論)
生1: 可以找一些泥巴來試一試,先把一塊泥巴做成圓柱的形狀,量出底和高,然后再做成等底等高的圓錐,看能作幾個,能做幾個就說明是幾倍.
生2: 我的方法也是用泥巴,但和他的方法不同的是,我先用泥巴做兩個等底等高的圓柱和圓錐,然后把他們稱一稱,根據他們的重量來判斷它們的體積是什么關系.
師: 太好了還有什么更妙的主意沒有?
生3: 我的想法是,做兩個等底等高的圓柱和圓錐容器,先把圓錐容器裝滿水,倒到圓柱容器里,看能倒幾下,能倒幾下就是幾倍關系.
生4: 我的方法是先做等底等高的圓柱和圓錐,把它們浸入盛滿水的容器,把溢出的水收集起來,在用量筒量出水的體積,就是圓柱和圓錐的體積,馬上就可以看出圓柱和圓錐的關系了
生5:我的方法更簡單,也是先做等底等高的圓柱和圓錐,只是要做小一點,直接放到裝有水的量筒里,量出它們的體積來.
師: 太好了!同學們真是想象力太豐富了,太有創造性了,那么我們今天就來選擇其中的比較方便的想法來做一下,看看等底等高的圓柱和圓錐有沒有什么關系?
《圓錐的體積》教學實錄 篇3
圓錐的體積
教學內容:教科書第42~~43頁的例1、例2,完成“做一做”和練習九的第3—5題。
教學目的:使學生初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,發展學生的空間觀念。
教具準備:等底等高的圓柱和圓錐各一個,比圓柱體積多的沙土(最好讓學生也準備).
教學過程:
一、復習
1、圓錐有什么特征?
使學生進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。
二、導人新課
我們已經學過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學習圓錐體積的計算。
板書課題:圓錐的體積
三、新課
1、教學圓錐體積的計算公式。
教師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名學生敘述圓柱體積計算公式的推導過程,使學生明確求圓柱的體積是通過切拼成長方體來求得的。
教師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓學生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
接著,教師邊演示邊敘述:現在圓錐和圓柱里都是空的。我先在圓錐里裝滿沙土,然后倒入圓柱。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?
問:把圓柱裝滿一共倒了幾次?
學生:3次。
教師:這說明了什么?
學生:這說明圓錐的體積是和它等底等高的圓柱的體積的 。
板書:圓錐的體積=1/3 × 圓柱體積
教師:圓柱的體積等于什么?
學生:等于“底面積×高”。
教師:那么,圓錐的體積可以怎樣表示呢?
引導學生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高
教師:用字母應該怎樣表示?
然后板書字母公式:v=1/3 sh
2、教學例1。
一個圓錐形的零件,底面積是19平方厘米, 高是12厘米。這個零件的體積是多少?
教師:這道題已知什么?求什么?
指名學生回答后,再問:已知圓錐的底面積和高應該怎樣計算?
引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算,做完后集體訂正。
3、做第50頁“做一做”的第1題。
讓學生獨立做在練習本上,教師行間巡視。
做完后集體訂正。
4、教學例2。
在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)
教師:這道題已知什么?求什么?
學生:已知近似于圓錐形的麥堆的底面直徑和高,以及每立方米小麥的重量;求這堆小麥的重量。
教師:要求小麥的重量,必須先求出什么?
學生:必須先求出這堆小麥的體積。
教師:要求這堆小麥的體積又該怎么辦?
學生:由于這堆小麥近似于圓錐形,所以可利用圓錐的體積公式來求。
教師:但是題目的條件中不知道圓錐的底面積,應該怎么辦。?
學生:先算出麥堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出麥堆的體積。
教師:求得小麥的體積后.應該怎樣求小麥的重量?
學生:用每立方米小麥的重量乘以小麥的體積就可以求得小麥的重量。
分析完后,指定兩名學生板演.其余學生將計算步驟寫在教科書第50頁上。做完后集體訂正,注意學生最后得數的取舍方法是否正確。教師要說明小麥每立方米的重量隨著含水量的不同而不同,要經過量才能確定,735千克并不是一個固定的常數
(2)組織學生討論,怎樣測量小麥堆的底面直徑和高?
討論后.先讓學生說出自己的想法.然后教師再介紹一下測量的方法:測量底面直徑時。可以用兩根竹竿平行地放在小麥堆兩側,測量出兩根竹竿間的距離就是底面直徑:也可以用繩子在底部圓的周圍圍上一圈量得小麥堆的周長,再算出直徑。測量小麥堆的高。可用兩根竹竿.將一根竹竿過小麥堆的頂部水平放置,另一根竹竿豎直與水平的竹竿成直角即可量得高。
5、做“做一做”的第2題。
教師:這道題應該先求什么?
學生:要先求圓錐的底面積。讓學生做在練習本上,教師行間巡視。
做完后集體訂正。
四、小結(略)
五、課堂練習
1、做練習九的第3題。
指定3名學生在黑板上板演,其余學生做在練習本上。
集體訂正時.讓學生說一說自己的計算方法。
2,做練習九的第4題。
教師可以讓學生回答以下問題:
(1)這道題已知什么?求什么?
(2)求圓錐的體積必須知道什么?
(3)求出這堆煤的體積后,應該怎樣計算這堆煤的重量?
然后讓學生做在練習本上,教師巡視,做完后集體訂正。
3、做練習九的第5題。
教師指名學生先后回答下面問題:
(1)圓柱的側面積等于多少?
(2)圓柱的表面積的含義是什么?怎樣計算?
(3)圓柱體積的計算公式是什么?
(4)圓錐的體積公式是什么?
然后,讓學生把計算結果填寫在教科書第51頁的表格中。做完后集體訂正。
《圓錐的體積》教學實錄 篇4
思考一:學生預習后教師怎么教
預習后,學生已經知道圓錐的體積公式,有了這個公式,教師如果什么都不講,學生或許也能照著公式去解決問題。只是學生對公式是怎樣推導來的,為什么要乘1/3,不一定理解。出于這樣的學情,我把教材的思路變為:是什么——為什么——有什么用,這樣三個流程。首先說說圓錐的體積公式是什么?然后用實驗來驗證它是怎樣推導來的?最后用這個公式解決哪些問題?
思考二:怎樣發揮小組合作的價值
合作學習的價值可以體現于同伴間的優劣互助,體現于分工合作帶來的高效,也體現于智慧的相互碰撞。本節課的實驗研究,需要向學生提出要求:1號拿圓錐,2號倒水,3號觀察圓柱,4號記錄實驗單。在這樣的分工下,學生可以比較順利的完成實驗。
思考三:如何有效發揮教師的主導作用,讓操作活動更加具有價值。
教師的活動設計決定了教學效果。教師設計活動時要讓學生真正“經歷”了知識形成的過程,而不是僅僅停留在簡單的的模仿操作,充當操作工的角色。本節課的難點之一就是讓學生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件。為了有效突破這個難點,教師可以先讓學生自主用高和底不同情況的圓柱和圓錐進行操作活動,在匯報交流中可能會出現不同的結論(如果沒有教師可以唱反調,示范一次,引導學生深度思考),學生此時引發爭論。通過讓學生反思不同的操作結果,讓學生發現問題、提出問題、分析問題、解決問題,使學生不僅“經歷”了知識形成的過程,獲得新知,同時學生的探索精神和實踐能力得到了充分發展
思考四:如何把學生的思維引向深處
數學是思維的體操,學生思維的寬度和深度,需要教師去培養,去訓練。本節課上的“等底等高的圓錐體積是圓柱體積的1/3”,看似簡單的一個結論,其實其中隱藏著很多學問,由此可以聯想到下面的結論:等底等高的圓柱體積是圓錐體積的3倍,把圓柱削成圓錐,削去部分的體積是圓柱體積的2/3,是圓錐體積的2倍。圓錐體積比與它等底等高的圓柱體積少。圓柱和圓錐等積等底時,圓錐的高是圓柱的3倍。這么多知識點,需要教師在課前精心準備和預設,教師只有有意識地去引導,去啟發,學生的思維才會走向深處。
思考五:學生在做本節課的練習時,往往容易發生兩個方面的錯誤
一是在計算圓錐的體積時,漏乘1
/
3,;二是錯誤的判斷“圓錐的體積是圓柱的1
/
3”。為什么學生經歷了“類比猜想—驗證說明”的過程,理解了圓錐體積的計算方法,在做題時還是犯錯。這僅僅歸結于學生身上嗎?我想在教研課,或者是同課異構,或者是小型課題的研究時,教師需要進行深入的探索和研究。
《圓錐的體積》教學實錄 篇5
一,說教材:
1,本課教學內容是義務教育課程標準實驗教材小學數學六年級下冊的第二單元《圓柱與圓錐》中《圓錐體積》的第一課時.教學內容為圓錐體積計算公式的推導,例2,例3,相應的"做一做"及練習四的習題.
2,本課是在學生已經掌握了圓柱體積計算和認識了圓錐的基本特征的基礎上學習的,是小學階段幾何知識的最后一課.學好這一部分內容,有利于進一步發展學生的空間觀念,進一步解決一些實際問題打下基礎.教材按照實驗,觀察,推導,歸納,實際應用的程序進行安排.
3,教學重點:能正確運用圓錐體積計算公式求圓錐的體積.
教學難點:理解圓錐體積公式的推導過程.
4,教學目標:
知識目標:理解并掌握圓錐體積公式的推導過程,學會運用圓錐體積計算公式求圓錐的體積;
能力目標:能解決一些有關圓錐的實際問題,通過圓錐體積公式的推導實驗,增強學生的實踐操作能力和觀察比較能力;
情感與價值觀:通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,培養交流與合作的團隊精神.
5,教具準備:等底等高的圓柱,圓錐一對,與圓柱等底不等高的圓錐一個,與圓柱等高不等底的圓錐一個.
學具準備:讓學生分組制作等底等高的圓柱,圓錐若干對,一定量的細沙.
二,說教法:
1,實驗操作法.
波利亞說過:"學習任何知識的最佳途徑是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的內在規律,性質和聯系."因此,我在課上設計了一個實驗,通過學生動手操作,用空圓錐盛滿沙后倒入等底等高空圓柱中,發現"圓錐的體積等于和它等底等高的圓柱體積的三分之一".利用實驗法,為推導出圓錐的體積公式發揮橋梁和啟智的作用,有助于發展學生的空間觀念,培養觀察能力,思維能力和動手操作能力.
2,比較法,討論法,發現法三法優化組合.
幾何知識具有邏輯性,嚴密性,系統性的特點.因此在做實驗時,我要求學生運用比較法,討論法,發現法得出結論:"圓錐的體積等于與它等底等高圓柱體積的三分之一".然后再讓學生討論假如這句話中去掉"等底等高"這幾個字還能否成立,并讓學生用不等底等高的空圓錐,空圓柱盛沙做實驗,發現有時裝不下,有時不夠裝,有時剛好裝滿,得出結論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了"等底等高"這個重要的前提條件.
三,說學法
我在研究教法的同時,更重視對學生學法的指導.
1,實驗操作法.
2,嘗試練習法.
《圓錐的體積》教學實錄 篇6
【教材分析】
本節課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。本節內容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉化思想的滲透,直觀引導學生經歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養學生抽象的邏輯思維能力,激發學生的想象力。
【設計理念】
數學課程標準中指出:應放手讓學生經歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發展空間觀念,從而提高學生自主解決問題的能力。
【教學目標】
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態度與價值觀:培養學生勇于探索的求知精神,感受到數學來源于生活,能積極參與數學活動,自覺養成與人合作交流與獨立思考的良好習慣。
【教學重點】圓錐體積公式的理解,并能運用公式求圓錐的體積。
【教學難點】圓錐體積公式的推導
【學情分析】
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發現問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對 于新的知識教學,他們一定能表現出極大的熱情。
【教法學法】試驗探究法 小組合作學習法
【教具學具準備】多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
【教學流程】
一、回顧舊知,溝通聯系。(2分鐘)
師:同學們,前幾節課我們學習了有關圓柱體和圓錐的知識, 李老師在上新課前,想考考大家,看大家學習得怎么樣。好嗎?
生:好。
1、圓柱體積的計算公式是什么?
指名學生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉化方法在數學學習中的應用。
2、完成練習題,讓學生復習圓柱體體積公式。
二、創設情景,引出問題。
1.出示圓錐形小麥堆的圖片。(4分鐘)
師:同學們,看,小麥堆得像小山一樣,小麥豐收了。爸爸出了一道難題考小芳,讓她算算這堆小麥的體積。這可難倒小芳了,因為她只學過圓柱的體積計算,圓錐體怎么樣計算還沒有學,你可以幫幫她嗎?
生:可以。
師:關于圓錐,你已經知道了什么?
學生1:我知道什么樣的物體是圓錐,還知道圓錐各部分的名稱。教師請該生上臺用實物進行介紹。
學生2:我還知道圓錐的高只有一條。老師讓該生上臺利用實物具體介紹高從哪兒到哪兒。
學生3:我知道圓錐的側面展開是一個扇形,底面是圓形。
師:關于圓錐,你還想知道什么?
學生1:我想知道圓錐的側面積怎么計算?
教師追問:你認為應該怎么計算呢?
學生1:應該用扇形的面積加上底面圓的面積。
教師肯定,同時說明:由于我們還沒有學習扇形的面積計算方法,所以在小學我們不學習圓錐的側面積計算。
學生2:我想知道怎樣計算圓錐的體積?
教師追問:那你認為圓錐的體積應該怎樣計算呢?大家想一想。今天我們就一起來研究圓錐的體積。(板書課題)
2.引導學生獨立思考,提出猜想。(1分鐘)
根據學生的各種猜想,教師進一步引導學生思考:我們學過哪些圖形的體積計算?你覺得圓錐體積可能和哪種圖形的體積有關?
既然有人認為圓錐的體積可能與圓柱有關,那么,我們就借助圓柱來探究圓錐的體積計算方法,看看行不行?
3.引導學生進一步觀察、比較、猜測。(4分鐘)
(1)教師舉起圓柱、圓錐教具,把圓錐套在透明的圓柱里面,讓學生想想他們的體積之間有什么聯系。
(2)學生猜測。
(3)既然圓錐的體積與圓柱有關,是不是隨便一個圓柱都與圓錐的體積有關?我們回想一下,圓柱的體積與什么有關?(底面積和高)那么圓柱和圓錐我們就要研究的重點就放在底面積和高。引導學生說出以下幾種情況:
等底等高,等底不等高,等高不等底,不等高不等底
你覺得所有的情況都要研究嗎?我們看看老師列舉的情況(課件),你覺得等底不等高,等高不等底,不等高不等底還有必要實驗嗎?當然,剛才同學們都是猜測,我們必須通過實驗去驗證。
4.實驗探究。(14分鐘)
(1)開始實驗收集數據。
師:圓錐的體積究竟與圓柱體積有什么關系?請同學們親自驗證。等底等高和不等底不等高的各種圓柱、圓錐的教具。實驗要求:根據需要選用實驗用具,小組成員分工合作,輪流操作,并做好實驗數據的收集整理。
1號圓錐
2號圓錐
3號圓錐
次數
與圓柱是否等底等高
讓學生先分小組議一議如何實驗,再動手。
學生動手實驗,教師巡視指導。
(2)匯報實驗結果。
師:觀察大家的數據,你發現了什么?
師:進一步觀察,在什么情況下圓柱剛好能裝下三個圓錐的水?
師:是不是所有符合等底等高都有這樣的關系?
教師用課件再演示。
(3)總結歸納。
教師說明:可能同學們在實驗過程中,不一定剛好是3次,可能差一點點,這是我們實驗中允許的誤差,由于我們知識所限,現在只能用實驗法這樣不太嚴格的方法來推導,將來你們將用到更加高深的數學知識來推導公式。但是數學家已經證明了這一結論,大家可以直接用。
(4)小組討論:你們發現了什么?得出怎么樣的結論?
(5)圓錐體積計算公式的推導。
(5)加深理解公式。要求圓錐的體積,必須知道什么信息?
三、鞏固提高,解決問題。(12分鐘)
1.應用新知
一個圓錐形的零件,底面積是28.26平方厘米,高是12厘米。這個零件的體積是多少? “底面積是28.26平方厘米”改為
“底面半徑是3厘米”、
“底面直徑是6厘米” 、
“底面周長是18.84厘米”
2. 打谷場上,有一個近似于圓錐的小麥堆,測得底面半徑是2米,高是1.5米。你能計算出這堆小麥的體積嗎?(回歸問題)
注意提醒學生簡便計算。
3. 做一做:一個圓錐形的零件,底面積是19平方厘米,高是12cm, 這個零件的體積是多少立方厘米?
4.我是小法官。(判斷題)
5.拓展提高:把一個棱長是6厘米的正方體木塊,加工成一個最大圓錐體,圓錐的體積是多少立方厘米?
四、閱讀教材,思考問題。(1分鐘)
今天的學習內容,請大家課后認真閱讀課本。
五、小結全課,分享體會。(1分鐘)
師:這節課我們探究了什么知識?怎樣探究的?具體說一說。你對自己在本節課上的表現滿意嗎?你認為自己哪兒掌握的最好?還有什么疑惑?
學習效果評價設計:
(一)學生學習效果的評價
1、一個圓錐的半徑是3厘米,高是20厘米,求圓錐的體積是多少?
2、一個圓柱的底面積是18平方分米,高是6分米,你知道與它等底等高的圓錐的體積嗎?
(二)學生學習狀態的評價
(1)對于今天這節課你的心情是:
高興( ) 比較高興( ) 一般( ) 不高興( )
(2)這節課你舉手的次數是:
10次及10次以上( ) 5次到9次( ) 1次到4次( )
沒舉過手( )
(3)你覺得你在本節課中的收獲大嗎?
大( ) 比較大( ) 一般( ) 沒收獲( )
六、作業布置,課外延伸。(1分鐘)
找找身邊的圓錐,自己測量有關數據,編寫一道與圓錐體積知識的題目有關并解決。
《圓錐的體積》教學實錄 篇7
教學目標:
1、讓學生掌握圓錐體積的計算方法,并能運用公式計算圓錐的體積,解決簡單的實際問題。
2、通過動手操作實驗,使學生經歷圓錐體積公式的推導過程。
3、在觀察與分析、操作與實驗的學習活動中培養學生主動探究問題和空間想象能力。
教學重點、難點: 掌握圓錐體積公式。
教具使用: 課件,等底等高長方形、三角形彩紙,等底等高圓錐、圓柱教具,水。
教學過程:
一、創設情境,問題導入
1、師出示長方形、三角形紙各一張。
提問:等底等高的長方形與三角形面積有什么關系?
2、提問:旋轉長方形,三角形各得到什么圖形?
長方形沿著長旋轉一周得到圓柱、直角三角形沿一條直角邊旋轉一周形成圓錐。
3、觀察。旋轉后得到的圓柱和圓錐你有什么發現?(等底等高)
4、猜想。旋轉后得到的圓錐的體積與圓柱的體積又有怎樣的關系?
二、探究新知
1、實驗
師出示:等底等高的圓柱、圓錐學具、水。
師:現在我們就要做一個實驗,看看圓柱和圓錐的體積有什么關系?
生動手實驗:
預設方案:①先灌滿圓錐,3次倒入圓柱
②先灌滿圓柱,3次倒入圓錐
2、生演示匯報
師板書:圓錐的體積 等于 圓柱體積的
質疑:
追問:是否同意上面的結論。引導學生說出:和它等底等高補充板書。
3、小結操作過程,課件演示。
4、推導公式。讓生說圓錐的體積用字母如何來表示?
v錐= sh= πr2h
三、實際應用
(1)、一個圓錐形的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?
生獨立完成,師巡視,生板書。
強調:1912 是與圓錐等底等高圓柱的體積,再乘
1912=73(立方厘米)
(2)、在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.5米。每立方米小麥約重750千克,這堆小麥約有多少千克?
生獨立完成,師巡視,生板書
(4÷2)23.141.5=6.28(立方米)
6.28750=4710(千克)
3、填空
⑴一個圓錐的底面積是12平方厘米,高是6厘米,它的體積是( )立方厘米。
⑵一個圓柱和一個圓錐等底等高,圓柱的體積是3立方分米,圓錐的體積是( )立方分米。
⑶一個圓錐比與它等底等高的圓柱體積少12立方厘米,圓柱體積是( )立方厘米。
4、判斷:
⑴圓柱一定比圓錐體的體積大。( )
⑵圓錐的體積等于和它等底等高的圓柱體積的 。 ( )
⑶正方體、長方體、圓錐體的體積都等于底面積高。( )
⑷等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米。( )
四、拓展提高
有一根底面直徑是6厘米,長是15厘米的圓柱體鋼材,要把它削成與它等底等高的圓錐形零件。要削去鋼材多少立方厘米?
法一:(v柱 -v錐) (6÷2)23.1415- (6÷2)23.1415=282.6(立方厘米)
法二:( v柱) (6÷2)23.1415=282.6(立方厘米)
五、課堂小結:這節課你有哪些收獲?
板書設計
圓錐的體積
圓錐的體積 等于和它等底等高的圓柱體積的
v錐= sh= πr2h
1912=73(立方厘米)
(4÷2)23.141.5=6.28(立方米)
6.28750=4710(千克)
《圓錐的體積》教學實錄 篇8
指導思想與理論依據:
本節課的教學內容是圓錐體積公式的推導,是一節幾何課,新課程標準指出:教學的任務是引導和幫助學生主動去從事觀察、猜想、實驗、驗證、推理與交流等數學活動,從而使學生形成自己對數學知識的理解和有效的學習策略。因此,在設計本節課時,我力求為學生創造一個自主探索與合作交流的環境,使學生能夠從情境中發現數學問題,學生會產生探究問題的需要,然后再通過自己的探索去發現和歸納公式,體驗過程。
教學背景分析:
(一)教學內容分析:
1、教材內容:
本節教材是在學生已經掌握了圓柱體體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內容。讓學生學好這一部分內容,有利于進一步發展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。
2、研讀完教材后,自己的幾個問題:
(1)在教學的過程中如何將圓錐體積推導過程與圓柱構建起聯系,還不會使學生感到生硬?
(2)學生對三分之一好理解,怎樣去認識是等底等高的柱、錐。
(3)大家都知道本節課必少不了學生的操作,怎么操作才是有效操作?怎么操作才能滿足學生的求知欲?怎么操作才能使學生更好體驗這個過程?
(4)本節課的教學內容只能挖掘到圓錐的體積嗎?能不能再深入一些?
3、自己的創新認識:
首先,研讀教材后,我認為這幾個問題的根本是一致的都是要把握住“誰在學?怎么學?”首先,在設計本節課時我想不只是讓學生學會一個公式,而是學會一種數學學習的方式,一種數學學習的思想,體驗一種數學學習的過程。
其次,是要提供給同學們一個可操作的空間。
(二)學情分析:
1、學生在前面的學習中對點、線、面、體有一定的基礎知識,同時也獲得了轉化、對應、比較等數學思想。尤其是對于高年級段的同學來講他們獲取知識的渠道十分豐富,自己又有一定探究能力,對于圓錐體積的知識相信是有一定認識的,在進行教學設計前我們應該了解到他們認識到哪兒了?了解學生的起點,為制定教學目標和選擇教學策略做好準備。
2、自己的認識:(結合自己在講課時發現的問題而談)
學生能夠根據以前的學習經驗圓柱和圓錐的底面都是圓形認識到二者之間存在一定聯系,而且又是剛學完圓柱學生認識到這一點看來并不難,難的是等底等高。因此,在教學設計過程中要注意柱、錐間聯系的設計,突破學生對“圓錐的體積是與它等底等高的圓柱體積的三分之一”中的“等底等高”。
(三)教學方式與教學手段分析:
根據本節課的教學內容及特點,在教學設計過程中我選擇了 “操作——實驗”的學習方式。學習任何知識的最佳途徑是由自已去發現,因為這種發現理解最深,也最容易掌握其中的內在規律、性質和聯系。”我認為這也正是我在設計這節課中所要體現的核心內容。第一次學習方式的指導:體現在出示生活情境后,先讓學生進行大膽猜測“買哪個蛋糕更劃算”。本次學習方式的指導是通過學生對生活問題進行猜想,使學生認識到其中所包含的數學問題,并由此引導學生再想一想你有什么解決方法。
(四)技術準備與教學媒體:
在創設情境中利用多媒體出示主題圖,然后要從圖中剝離出圖形來,并演示整個實驗過程。
教學目標設計:
(一)教學目標:
1、使學生掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。
2、通過操作——實驗的學習方式,使學生體驗圓錐體積公式的推導過程,對實驗過程進行正確歸納得到圓錐的體積公式,能利用公式正確計算,并會解決簡單的實際問題。
3、培養學生的觀察、分析的綜合能力。
(二)教學重點:理解圓錐體積的計算公式并能運用圓錐體積公式正確地計算圓錐的體積
(三)教學難點:通過實驗的方法,得到計算圓錐體積的公式。
教學過程與教學資源設計:
《圓錐的體積》教學實錄 篇9
以前教學《圓錐的體積》時多是先由教師演示等底等高情況下的三分之一,再讓學生驗證,最后教師通過對比實驗說明不等底等高的差異,但效果不太好,學生對等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設計了以上的教學片斷:讓學生自選空圓柱和圓錐研究圓柱和圓錐體積之間的關系,學生通過動手操作得出的結論與書上的結論有很大的差異,有三分之一、四分之一、二分之一,思維出現激烈的碰撞,這時我沒有評判結果,而是讓學生經歷一番觀察、發現、合作、創新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學生裝在看似混亂無序的實踐中,增加對實驗條件的辨別及信息的批判。既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發展。而這些目標的達成完全是靈活機智地利用“錯誤”這一資源,所產生的效果。
在平時的課堂教學中,我們要善于利用“錯誤”這一資源,讓學生思考問題幾經碰壁終于找到解決問題的方法,把思考問題的實際過程展現給學生看,讓學生經過思維的碰撞,這樣做實際上是非常富于啟發性的.學習數學不僅要學會這道題的解法,而且更要學會這個解法是如何找到的。
教學不僅僅是告訴,更需要經歷。真正關注學生學習的過程,就要有效利用錯誤這一資源,教師要勇于樂于向學生提供充分研究的機會,幫助他們真正理解和掌握數學思想和方法,獲得廣泛的數學活動經驗,這樣,我們的課堂才是學生成長和成功的場所。
《圓錐的體積》教學實錄 篇10
一、學習內容:
教師提供 小學數學六年級下冊14頁----17頁。
二、學生提供:
等底等高的圓柱和圓錐教學用具各一個,小水盆,一些綠豆。
三、學習目標:
1、結合具體情景和實踐活動,了解圓錐的體積或容積的含義,進一步體會物體體積和容積的含義。
2、經歷“類比猜想---驗證說明”的探索圓錐體積計算方法的過程,掌握圓錐體積的計算方法,能正確計算圓錐的體積,并解決一些簡單的實際問題。
四、重點難點:
重點:圓錐的體積計算。
難點圓錐的體積公式推導。
關鍵:圓錐的體積是與它等底等高的圓柱體積的三分之一。
五、學習準備:
等底等高的圓柱和圓錐教學用具各一個,一個三角形和一個長方形。
看看你們能不能發現這兩個圖形之間隱藏的關系?你有什么發現?
長方形的長等于三角形的底,長方形的寬等于三角形的高。
你的發現真了不起。這種情況在數學中叫做“等底等高”。在“等底等高”的條件時,它們的面積又有什么樣的關系呢?
三角形的面積等于長方形面積的一半或長方形面積是三角形面積的2倍。
六、布置課前預習
點撥自學
1、圓柱和圓錐有哪些相同的地方?
2、圓柱和圓錐有哪些不同的地方?
3、圓錐的體積和圓柱的體積有什么關系呢?
請小組開始討論。注意,這里的圓柱和圓錐指的就是圖上的圓柱和圓錐喲! 按照預習中學生存在的問題,教師加以點撥。
七、交流解惑:
它們的底面積相等,高也相等
圓柱有無數條高,圓錐只有一條高。圓錐體積比圓柱小……
動手做實驗:把圓錐裝滿綠豆,倒入圓柱中,看倒幾次能把圓柱裝滿。
通過實驗操作,得出了正確的科學的結論:圓錐的體積等于和它等底等高的圓柱體積的三分之一。 組內交流
組際解疑
老師點撥
八、合作考試
1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?(口算)
2、沈老師在大梅沙玩,將沙堆成一個圓錐形,底
面半徑約3分米,高約2.7分米,求沙堆的體積。
(只列式不計算)
3、在打谷場上,有一個近似于圓錐的小麥堆,測
底面直徑是4米,高是1.2米。每立方米小麥約
重735千克,這堆小麥大約有多少千克?
(只列式不計算)
4、如圖,求這枝大筆的體積。
(單位:厘米)
(只列式不計算)
5、將一個底面半徑是2分米,高是4分米的圓柱
形木塊,削成一個的圓錐,那么削去的體積
是多少立方分米?(口算)
九、自我總結:
通過今天的學習,我學會了 ,以后我會 在 方面更加努力的。
十、教學反思:
本節課通過交流、問答、猜想等形式,調動學生學習的積極性,激發學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗來就興趣極高,在實驗過程中通過學生的親身體驗知識的探究的過程,加深學生對所學知識的理解,學生學習的積極性被調動起來了,學生學得輕松、愉快。充分讓學生體會到了等底等高的圓錐的體積是圓柱的三分之一。
《圓錐的體積》教學實錄 篇11
教學目標:
1、通過動手操作實驗,推導出圓錐體體積的計算公式。
2、理解并掌握體積公式,能運用公式求圓錐的體積,并會解決簡單的實際問題。
3、通過學生動腦、動手,培養學生的觀察、分析的綜合能力。
教具準備:等底等高的圓柱體和圓錐體5套,大小不同的圓柱體和圓錐體5套、水槽5個,以及多媒體輔助教學課件。
教學過程設計:
一、復習舊知,做好鋪墊。
1、認識圓柱(課件演示),并說出怎樣計算圓柱的體積?(屏幕出示:圓柱體的體積=底面積×高)
2、口算下列圓柱的體積。
(1)底面積是5平方厘米,高 6 厘米,體積 = ?
(2)底面半徑是 2 分米,高10分米,體積 = ?
(3)底面直徑是 6 分米,高10分米,體積 = ?
3、認識圓錐(課件演示),并說出有什么特征?
二、溝通知識、探索新知。
教師導入:同學們,我們已經認識了圓錐,掌握了它的特征,但是,對于圓錐的學習我們不能只停留在認識上,有關圓錐的知識還有很多有待于我們去學習、去探究。這節課我們就來研究“圓錐的體積”。(板書課題)
1、探討圓錐的體積計算公式。
教師:怎樣推導圓錐的體積計算公式呢?在回答這個問題之前,請同學們先想一想,我們是怎樣知道圓柱體積計算公式的?
學生回答,教師板書:
圓柱------(轉化)------長方體
圓柱體積計算公式--------(推導)長方體體積計算公式
教師:借鑒這種方法,為了我們研究圓錐體體積的方便,每個組都準備了一個圓柱體和一個圓錐體。你們小組比比看,這兩個形體有什么相同的地方?學生操作比較后,再用課件演示。
(1)提問學生:你發現到什么?(圓柱和圓錐的底和高有什么關系?)
(學生得出:底面積相等,高也相等。)
教師:底面積相等,高也相等,用數學語言說就叫“等底等高”。
(板書:等底等高)
(2)為什么?既然這兩個形體是等底等高的,那么我們就跟求圓柱體體積一樣,就用“底面積×高”來求圓錐體體積行不行?
(不行,因為圓錐體的體積小)
教師:(把圓錐體套在透明的圓柱體里)是啊,圓錐體的體積小,那你估計一下這兩個形體的體積大小有什么樣的倍數關系?(指名發言)
用水和圓柱體、圓錐體做實驗。怎樣做這個實驗由小組同學自己商量,但最后要向同學們匯報,你們組做實驗的圓柱體和圓錐體在體積大小上有什么樣的倍數關系。
(3)學生分組做實驗,并借助課件演示。
(教師深入小組中了解活動情況,對個別小組予以適當的幫助。)
a、誰來匯報一下,你們組是怎樣做實驗的?
b、你們做實驗的圓柱體和圓錐體在體積大小上發現有什么倍數關系?
(學生發言:圓柱體的體積是圓錐體體積的3倍)
教師:同學們得出這個結論非常重要,其他組也是這樣的嗎?
學生回答后,教師用教學課件演示實驗的全過程,并啟發學生在小組內有條理地表述圓錐體體積計算公式的推導過程。
(板書圓錐體體積計算公式)
教師:我們學過用字母表示數,誰來把這個公式用字母表示一下?(指名發言,板書)
(4)學生操作:出示另外一組大小不同的圓柱體和圓錐體進行體積大小的比較,通過比較你發現什么?
學生回答后,教師整理歸納:不是任何一個圓錐體的體積都是任何一個圓柱體體積的 。(教師拿起一個小圓錐、一個大圓柱)如果老師在這個大圓錐體里裝滿了水,往這個小圓柱體里倒,需要倒三次才能倒滿嗎?(不需要)
為什么你們做實驗的圓錐體里裝滿了水往圓柱體里倒,要倒三次才能倒滿呢?(因為是等底等高的圓柱體和圓錐體。)
(教師給體積公式與“等底等高”四個字上連線。)
進一步完善體積計算公式:
圓錐的體積=等底等高的圓柱體體積×1/3
=底面積 × 高×1/3
V = 1/3Sh
教師:現在我們得到的這個結論就更完整了。(指名反復敘述公式。)
課件出示:
想一想,討論一下:?
(1)通過剛才的實驗,你發現了什么?
(2)要求圓錐的體積必須知道什么?
學生后討論回答。
三、 應用求體積、解決問題。
1、口答。
(1)有一個圓柱的體積是27立方分米,與它等底等高的圓錐體積是多少?
(2)有一個圓錐的體積是9立方分米,與它等底等高的圓柱體積是多少?
2、出示例題,學生讀題,理解題意,自己解決問題。
例1、一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?
a、 學生完成后,進行小組交流。
b 、 你是怎樣想的和怎樣解決問題的。(提問學生多人)
c 、 教師板書:
1/3×19×12=76(立方厘米)
答:它的體積是76立方厘米
3 、練習題。
一個圓錐體,半徑為6cm,高為18cm。體積是多少?(學生在黑板上只列式,反饋。)
我們已經學會了求圓錐體的體積,現在我們來解決有關圓錐體體積的問題。
4、出示例2:要求學生自己讀題,理解題意。
在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1.2米,每立方米小麥約重735千克,這堆小麥約有多少千克?(得數保留整千克)
(1)提問:從題目中你知道了什么?
(2)學生獨立完成后教師提問,并回答學生的質疑:
3.14×(4÷2)2×1.2× 1/3 表示什么?為什么要先求圓錐的體積?得數保留整千克數是什么意思?….
5、比較:例1和例2有什么不同的地方?
(1)例1直接告訴了我們底面積,而例2沒有直接告訴,要求我們先求出底面積,再求出圓錐體積;(2)例1 是直接求體積,例2是求出體積后再求重量。
《圓錐的體積》教學實錄 篇12
一、教材分析
圓錐的體積這部分教學內容是屬于小學數學空間與圖形的領域.這部分內容的教學是在圓柱體體積教學的基礎上進行的,教學時應加強學生動手操作、觀察等活動讓學習經歷探索知識的過程,培養學生自主解決問題的能力,從而加強學生對所學知識的深刻理解.本節課的內容對今后學生學習立體圖形有著重要的作用.
二、教學過程
(一)引出課題
1、師:同學們,看一看祝老師手中拿的是什么?
生:這是一個圓錐體.
2、師:你們能不能用以前的辦法求出這個圓錐體的體積呢?
生:可以,我們可以用排水法來求出它的體積.
師:如果是一個很大的一個圓錐體還用這種辦法,會怎樣?
生:能求出來但會很麻煩.
師:很好.那么我們今天就共同研究求圓錐體體積的辦法.(板書課題)
(二)實驗探究推導公式
1、師:同學們,想求圓錐體的體積它會與哪些圖形有關呢?
生:圓柱體
2、師:請同學們拿出學具,選擇能夠推導出圓錐體體積公式的學具并把你們的發現記錄下來.(小組合作)
學生匯報:我們組選擇一個圓錐體、一個圓柱體和一些水進行實驗.我們發現圓柱體的體積是圓錐體體積的5倍多一些.
師:其他種和他們一樣嗎?
生:不一樣.
師:誰還愿意匯報.
生:我們小組選擇了一個等底等高的圓錐體、圓柱體和一些大米進行實驗我們發現圓柱體的體積是圓錐體體積的3倍.
生匯報:我們小組也選擇了等底等高的圓錐體圓柱體和一些細沙進行實驗.我們把細沙裝滿圓錐體后倒入和它等底等高的圓柱體內,正好倒了三次沒有剩余.我們得出圓柱體的體積是圓錐體體積的3倍
2、師:為什么你們在實驗的時候都用圓錐體和圓柱體,得到的是兩種不同的結論呢?
生:因為第一組用的不是等底等高的圓柱體和圓錐體所以得到的結論和我們兩組不同。
3、師小結:只有在等底等高的前提下,圓柱體和圓錐體的體積存在這樣的關系。即圓錐體的體積等于圓柱體體積的三分之一。如果用字母v來表示圓錐體的體積,s表示它的底面積,h表示它的高。v=1/3sh。
(三)鞏固練習
1、判斷
(1)圓柱體的體積是圓錐體體積的3倍。 ( )
(2)圓柱體的體積大于與它等底等高的圓錐體的體積。 ( )
(3)圓錐體的高是圓柱體的高的3倍,它們的體積相同。 ( )
2、解決問題
(1)有一個圓柱體它的體積是36立方厘米,與它等底等高的圓錐體是多少?
(2)有一個圓錐體沙堆,底面積是18平方米,高6米求沙堆的體積?
(3)一個圓錐體的體積是30立方分米,底面積是20平方分米,求它的高是多少分米?
三、教學反思
這節課上,我以高昂的激情,豐富的執教經驗,幽默風趣的語言,充分調動了學生的學習情趣,學生的學習積極性得到了充分的發揮。真不失為一節讓人回味的好課。
1、難點分散。
針對學生對圓錐體剛剛有了初步的認識,又有了對圓柱體體積的計算的基礎,對圓錐體的體積的計算沒有充分的認識。教者采用了直觀的導入:出示一個圓錐體,提問:“你認識這個物體嗎?誰能用以前的學習方法,求出它的體積?”學生回答后。教者緊接又發問:“如果是較大的物體怎么辦?”一石激起千層浪,引人入勝的問話,強烈的激起了學生的求知欲,學生進入了學習的最佳境界。
2、導入的新穎。
情境的創設使學生進入了有序的思維境地,教者將問題拋給了學生,放手讓學生用手中的學具自主地實驗。在實驗中發現、在發現中探索、在探索中交流,給學生的思維發展創設了空間,學生的觀點和意見得以自由的發表。教師的適時的點撥,解決了這節課的難點,即:必須是等底等高的圓錐和圓柱體,它們的體積關系才存在----等底等高的圓錐體的體積是圓柱體的三分之一。
3、教學手段和練習配套。
教者用考一考、請聽題等手段對本節課的內容進行強化。一方面,使學生的情緒圍著教者的教學目標轉,學生的學習興趣極高,每個人都能進行有效的思維;另一方面,從學生的認知過程看,符合了直觀——抽象——概括的認知過程,按照學生的認知規律組織教學。
4、學生一直處在積極的學習狀態中,整個教學過程注重了學生參與學習的積極性,讓學生重參與公式的推導過程而不是結論,每個學生的學習興趣的調動是這節課的一個亮點。學生始終處在思維十分活躍的狀態中,高潮迭起,一波連著一波,讓人體會到了新課標下的新課堂的教學魅力。教者的教學魅力盡現于此,得到了淋漓盡致的發揮。
《圓錐的體積》教學實錄 篇13
教學過程:
一、情境引入:
(1)(老師出示鉛錘):你有辦法知道這個鉛錘的體積嗎?
(2)學生發言:(把它放進盛水的量杯里,看水面升高多少……)
(3)教師評價:這種方法可行,你利用上升的這部分水的體積就是鉛錘的體積,間接地求出了鉛錘的體積。真是一個愛動腦筋的孩子。
(4)提出疑問:是不是每一個圓錐體都可以這樣測量呢?(學生思考后發言)
(5)引入:如果每個圓錐都這樣測,太麻煩了!類似圓錐的麥堆也能這樣測嗎?(學生發表看法),那我們今天就來共同探究解決這類問題的普遍方法。(老師板書課題)
設計意圖:情景的創設,激發了學生學習的興趣,使學生產生了自己想探索的需求,情緒高漲地積極投入到學習活動中去。
二、新課探究
(一)、探究圓錐體積的計算公式。
1、大膽猜測:
(1)圓錐的體積該怎樣求呢?能不能通過我們已學過的圖形來求呢?(指出:我們可以通過實驗的方法,得到計算圓錐體積的公式)
(2)圓錐和我們認識的哪種立體圖形有共同點?(學生答:圓柱)為什么?(圓柱的底面是圓,圓錐的底面也是圓……)
(3)請你猜猜圓錐的體積和圓柱的體積有沒有關系呢?有什么關系?(學生大膽猜測后,課件出示一個圓錐與3個底、高都不同的圓柱,其中一個圓柱與圓錐等底等高),請同學們猜一猜,哪一個圓錐的體積與這個圓柱的體積關系最密切?(學生答:等底等高的)
(4)老師拿教具演示等底等高。拿出等底等高的圓柱和圓錐各一個,通過演示,使學生發現“這個圓錐和圓柱是等底等高的。”
(5)學生用上面的方法驗證自己做的圓錐與圓柱是否等底等高。(把等底等高的放在桌上備用。)
2、試驗探究圓錐和圓柱體積之間的關系
我們通過試驗來研究等底等高的圓錐體積和圓柱體積的關系。
(1)課件出示試驗記錄單:
a、提問:我們做幾次實驗?選擇一個圓柱和圓錐我們比較什么?
b、通過實驗,你發現了什么?
(2)學生分組用等底等高的圓柱圓錐試驗,做好記錄。教師在組間巡回指導。
(3)匯報交流:
你們的試驗結果都一樣嗎?這個試驗說明了什么?
(4)老師用等底等高的圓柱圓錐裝紅色水演示。
先在圓錐里裝滿水,然后倒入圓柱。讓學生注意觀察,倒幾次正好把圓柱裝滿?把圓柱裝滿水往圓錐里倒,幾次才能倒完?
(教師讓學生注意記錄幾次,使學生清楚地看到倒3次正好把圓柱裝滿。)
(5)學生拿小組內不等底等高的圓錐,換圓錐做這個試驗幾次,看看有沒有這樣的關系?(學生匯報,有的說我用自己的圓錐裝了5次,才把圓柱裝滿;有的說,我裝了2次半……)
(6)試驗小結:上面的試驗說明了什么?(學生小組內討論后交流)
(這說明圓柱的體積是與它等底等高圓錐體積的3倍.也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。)
3、公式推導
(1)你能把上面的試驗結果用式子表示嗎?(學生嘗試)
(2)老師結合學生的回答板書:
圓錐的體積公式及字母公式:
(3)在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)
進一步強調等底等高的圓錐和圓柱才存在這種關系。
設計意圖:放手讓學生自主探究,在實踐中真正去體驗圓柱和圓錐之間的關系。
(二)圓錐的體積計算公式的應用
1、已知圓錐的底面積和高,求圓錐的體積。
(1)出示例2:現在你能求出老師手中的鉛錘的體積嗎?(已知鉛錘底面積24平方厘米,高8厘米)學生嘗試解決。
(2)提問:已知圓錐的底面積和高應該怎樣計算?
(3)引導學生對照圓錐體積的計算公式代入數據,然后讓學生自己進行計算。
2、已知圓錐的底面半徑和高,求圓錐的體積。
(1)出示例題:
底面半徑是3平方厘米,高12厘米的圓錐的體積。
(2)學生嘗試解答
(3)提問:已知圓錐的底面半徑和高,可以直接利用公式
v=1/3兀r2h來求圓錐的體積。
3、已知圓錐的底面直徑和高,求圓錐的體積。
(1)出示例3:
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數)
(2)要求沙堆的體積需要已知哪些條件?(由于這堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
(3)題目的條件中不知道圓錐的底面積,應該怎么辦?(先算出沙堆的底面半徑,再利用圓的面積公式算出麥堆的底面積,然后根據圓錐的體積公式求出沙堆的體積)
(4)分析完后,指定兩名學生板演,其余學生將計算步驟寫在教科書第26頁上.做完后集體訂正。(注意學生最后得數的取舍方法是否正確)
(5)提問
:已知圓錐的底面直徑和高,可以直接利用公式
v=1/3兀(d/2)2h來求圓錐的體積。
設計意圖:公式的延伸讓學生對所學知識做到靈活應用,培養了學生活學活用的本領。
《圓錐的體積》教學實錄 篇14
教學目標:
1、掌握圓錐的體積公式,能運用公式進行計算。
2、在觀察、實驗、討論等活動中探索圓錐的體積公式。
3、體驗數學與生活的密切聯系,自覺養成合作交流與獨立思考的良好習慣。
教學重點:
1、使學生探索出圓錐的體積公式。
2、初步掌握圓錐體積的計算方法并解決一些實際問題。
教學難點:探索圓錐體積的計算方法和推導過程。
教學過程:
一、情境導入
1、課件出示圖片
引導學生指圖說出冰淇淋形狀像我們學過的什么幾何體?圓錐
2、導入:同學們,冰淇淋形狀像我們學過的圓錐體,你喜歡吃冰淇淋嗎?那么冰淇淋體積有多大呢?這節課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知:
(一)圓錐的體積公式探討
師:大家猜想,探求圓錐的體積,會和我們學習過的那種形體有關系?(圓柱)為什么?底面都是圓形
師:我們的猜想是真的嗎?圓柱和圓錐的體積之間有沒有關系?有什么樣的關系?讓我們來做一個實驗來驗證一下吧!
出示圓柱和圓錐圖片,演示等底等高
師:今天用來試驗的教具有點特殊,他們的底相等,高也相等。
教師引導提出要求:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,用圓錐把圓柱裝滿需要幾次,看它們之間有什么關系,并想一想通過實驗你發現了什么?
學生分組實驗
每小組推舉一名學生匯報實驗結果:
當圓柱和圓錐的底面積相等,高相等時,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.(教師多媒體演示)
所以我們的結論是:
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的.
3、教師出示兩個大小懸殊的圓錐和圓柱,請同學猜測,圓錐的體積是否還是圓柱的三分之一?(進一步強調等底等高,教師演示)
4、師生共同總結結論:圓錐的體積等于和它等底等高的圓柱體積的1/3。
如果用用v表示圓錐的體積,s表示圓錐的底面積,h表示圓錐的高,圓錐的體積公式可以表示為:v= 1/3 sh
(二)簡單應用 嘗試解答
判斷:
1、圓柱的體積是圓錐體積的3倍。( )
2、圓柱的體積大于與它等底等高的圓錐的體積。( )
3、圓錐的高是圓柱的高的3倍,它們的體積一定相等。( )
填空:
1、一個圓柱的體積是75.36m³,與它等底等高的圓錐的體積是( )m³。
2、一個圓錐的體積是141.3cm³,與它等底等高的圓柱的體積是( )cm³。
例題:(出示課件)
工地上有一些沙子,堆起來近似于一個圓錐,這堆沙子大約多少立方米?(得數保留兩位小數。)
(生獨立列式計算,小組交流,是指名組長出示答案)
鞏固練習,運用拓展
一、求下圖中圓錐體積。(略)
二、 一堆煤成圓錐形,底面半徑是1.5m,高是1.1m。這堆煤的體積是多少?如果每立方米的煤約重1.4噸,這堆煤約有多少噸?(得數保留整數。)
三、提高拓展
有一根底面直徑是6厘米,長是15厘米的圓柱形鋼材,要把它削成與它等底等高的圓錐形零件。圓錐的體積是多少立方厘米?要削去鋼材多少立方厘米?
總結:你學到了什么?
板書設計:
圓錐的體積
等底等高 v錐=1/3v柱=1/3sh
教學內容:
本節教材是人教版六年級數學下冊第二單元“圓錐的體積”部分,課本第25-26頁。這部分內容是在學生已經認識圓錐的特征和會圓柱體積計算的基礎上學習的。學習過程中要引導學生探索并掌握圓錐的體積公式。然后能夠根據公式及變形公式進行計算。
《圓錐的體積》教學實錄 篇15
下面是《圓錐的體積》說課稿范文,歡迎參考!
一、說教材
1、本節教材是義務教育小學數學(蘇教版)六年制第十二冊第二單元《圓柱和圓錐》中《圓錐體積》的第一課時。教學內容為圓錐體積計算公式的推導、例五、相應的“試一試”及“練一練”。
2、本節教材是在學生已經掌握了圓柱體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內容。讓學生學好這一部分內容,有利于進一步發展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。
3、教學重、難點:⑴教學重點:能正確運用圓錐體積計算公式求圓錐的體積;⑵教學難點:理解圓錐體積公式的推導過程。
4、教學目標:⑴知識方面:理解并掌握圓錐體積公式的推導過程,學會運用圓錐體積計算公式求圓錐的體積;⑵能力方面:能解決一些有關圓錐的實際問題,通過圓錐體積公式的推導實驗,增強學生的實踐操作能力和觀察比較能力;⑶德育方面:通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,培養交流與合作的團隊精神。
5、教、學具準備:⑴教具準備:等底等高的圓柱、圓錐一對;⑵學具準備:讓學生分組制作等底等高的圓柱、圓錐若干對,準備一定量的細沙。
二、說教法
著名教育家布魯納說過:“教學不是把學生當成圖書館,而是要培養學生參與學習的過程。”學生是學習的主體,只有通過自身的實踐、比較、思索,才能更加深刻地領略到知識的真諦。因此,我在設計教法時,根據本節幾何課的特點,結合小學生的認知規律,采用以下幾種教法:
1、實驗操作法。波利亞說過:“學習任何知識的最佳途徑是由自己去發現,因為這種發現理解最深,也最容易掌握其中的內在規律、性質和聯系。”因此,我在學生已經認識圓錐的基礎上,設計了一個實驗:通過學生動手操作,用空圓錐盛滿沙后倒入等底等高空圓柱中,發現“圓錐的體積等于和它等底等高的圓柱體積的三分之一”。利用實驗法,為推導出圓錐的體積公式發揮橋梁和啟智的作用,有助于發展學生的空間觀念,培養觀察能力、思維能力和動手操作能力,為進一步學習,提供了豐富的感性材料,從而逐步從具體的操作過渡到內部語言。
2、比較法、討論法、發現法三法優化組合。幾何知識具有邏輯性、嚴密性、系統性的特點。因此,在做實驗時,我要求學生運用比較法、討論法、發現法得出結論:“圓錐的體積等于與它等底等高圓柱體積的三分之一。”然后,再讓學生討論假如這句話中去掉“等底等高”這幾個字還能否成立,并讓學生理解“等底等高”的重要意義,得出結論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了“等底等高”這個重要的前提條件。
三、說學法
“人人學有價值的數學,人人都能獲得必要的數學,不同的人在數學上得到不同的發展”是新世紀數學課程的基本理念。新課程標準還強調引導學生主動參與、親自實踐、獨立思考、合作探究,改變單一的記憶、接受、模仿的被動學習方式。因此,我在講求教法的同時, 更重視對學生學法的指導。
1、實驗轉化法
有些知識單憑解說是無法讓學生真正理解的,只有通過實驗,才能深刻領悟其中的內在奧秘。在指導學生進行實驗操作時,我著重從三個方面進行引導:首先,讓學生做好操作的準備,也就是各自準備好等底等高的圓柱、圓錐一對,一定量的沙;其次,告訴他們操作的方法、步驟和注意點;第三,引導學生在操作中比較、發現、總結。這樣,通過實驗操作推導得出圓錐的體積公式,培養了學生觀察比較、交流合作、概括歸納等能力。
2、嘗試練習法
蘇霍姆林斯基認為:“成功的歡樂是一種巨大的情緒力量,它可以促進兒童好好學習的愿望。”本節課在學習例五時,放手讓學生嘗試自己自己去發現、總結、歸納,挖掘學生的潛能,讓他們體驗學習成功的樂趣,調動學生學習的積極性和主動性,發揮學生的主體作用,養成良好的學習習慣。
四、說教學程序
本節課我設計了以下四個教學程序:
1、談話導入
⑴出示圓柱:如果想知道這個容器的容積,怎么辦?
⑵出示圓錐:如果想知道這個容器的容積,怎么辦?
2、教學例五
⑴引導觀察:這個圓柱和圓錐有什么相同的地方?
⑵估計一下:這個圓錐的體積是圓柱體積的幾分之幾?
⑶討論:可以用什么方法來驗證你的估計?
⑷分組驗證;引導學生用適合的方法進行操作驗證。
⑸交流:說說自己小組是怎么驗證的,得到的結論是什么?
⑹ 討論:①通過實驗,我們知道這個圓錐的容積是這個圓柱容積的三分之一,那能不能說圓錐的體積就是圓柱的體積的三分之一?為什么?應該怎么說才準確?②那怎么算出這個圓錐的容積呢?③推導出圓錐體積的公式(師板書)。④如果已知r和h圓錐體積公式還可以怎樣計算?如果已知d和h圓錐體積公式怎樣計算?
⑺完成“試一試”。
3、鞏固練習
做“練一練”。
4、歸納總結
通過本節課你有什么收獲?有哪些問題需要我們今后注意?