積的變化規律教案(精選2篇)
積的變化規律教案 篇1
教學目標:
1.使學生經歷積的變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
2.嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
教學設計:
一、出示嘗試題,喚起學生得探求新知的欲望。
同學們的計算能力非常強,能快速口算這些題嗎?(出示)
6×2=12 80×4=320
6×20=120 40×4=160
6×200=1200 20×4=80
非常好!同學們,請仔細觀察上面每組算式,你能根據每組算式的特點接著再往下寫2個算式嗎?試一試。
學生獨立寫出。
二、自主學習,探索新知。
1.現在就請同學們以小組為單位,互相交流自己寫得算式,并說一說你是怎樣想的?
2.(先來匯報第一組)誰來介紹這組算式你接下去怎樣寫的?學生說出自己寫的第一組算式,你們也是這么寫的嗎?你們寫得這么正確,你一定發現了這組算式的規律,誰再來說一說我們發現的這組算式的特點?
點撥:擴大的倍數相同。
教師進一步引導:剛剛在這組算式里同學們發現,一個因數不變,另一個因數擴大10倍,積也擴大10倍。
如果讓你接著再往下寫,你還能再寫出來嗎?
3.猜一猜,如果一個因數不變,另一個因數擴大5倍,積會有怎樣的變化?
請同學們寫出一組這樣的算式驗證一下。學生寫出后匯報。
如果擴大30倍呢?如果擴大100倍呢?
你能試著用一句話來概括一下我們發現的這些規律嗎?
讓我們一起把剛才的發現記錄下來:(板書)一個因數不變,另一個因數擴大幾倍,積也擴大相同的倍數。
4.(第二組算式)同學們都這么愛動腦思考,你一定也發現了第二組算式的特點?誰來說一說?
根據我們發現的規律,同學們來查一查你寫的算式,對嗎?
同學們,讓我們再來看這組算式,我們已經發現一個因數不變,另一個因數縮小2倍,積也縮小相同的倍數。你能不能大膽的猜想,猜想一下這里會得出一個什么樣的規律?
板書:一個因數不變,另一個因數縮小幾倍,積也縮小相同的倍數。
誰來出一組算式,驗證一下我們的猜想!
5.同學們,你能把我們發現的規律用一句話來概括嗎?
板書:一個因數不變,另一個因數擴大(或縮。⿴妆,積也擴大(或縮。┫嗤谋稊。
6.你還有什么問題嗎?
剛才同學們通過積極得動腦思考,交流探究,發現了……(學生讀板書)這也就是我們這節課重點學習的“積的變化規律”(同時板書課題)。
運用這個規律,能幫助我們解決許多的數學問題。想不想試一試?
三、鞏固拓展,運用新知。
59頁3、2、4、5
四、結束。
同學們,你們用自己的智慧發現了數學上的規律,真了不起。只要大家肯動腦筋,數學中還有許多規律等待我們去發現。大家有信心嗎?
積的變化規律教案 篇2
教學過程:
一.談話,直接引入
師:同學們,我們已經學過了乘法,也能用乘法進行計算。其實在乘法計算中,有個很好的的規律。只要發現這個規律,并進行運用,就可以讓我們的計算變得更快更準確。你們想不想知道這個規律是什么啊?好、這節課就讓我們一起探究這個規律(板書課題:積的變化規律)
二、自主合作學習、探索規律
1、出示例題,研究問題
(1)6×2=12 (1)20×4=80
。2)6×20=120 (2)40×4=160
。3)6×200=1200 (3)80×4=320
師:知道得數嗎?誰說一說。
2、思考,概括規律
師:下面請同學仔細觀察這些算式、再認真想想,他們有什么特征呢?
生:一個因數都是6,另一個因數2到20,到200,都擴大了10倍。
師:你是說6不變,2擴大了10倍變成20,這個意思對嗎?
師:是個不錯的發現,還有誰想來說的?
生:一個因數是6,另一個因數2擴大了10倍,積也擴大了10倍
師:聽懂她的發現了嗎?你能具體地來說一說,你是怎么看出來的嗎?
生:6×2=12,6不變,2擴大10倍是20,6×20=120,12到120也擴大了10倍。(同時板書)
師:她的這個發現真有意思。你們都同意嗎?
師:我們把這個發現,用在右邊的算式,看看還是不是有這個規律,
生:一個因數4不變,另一個因數20擴大2倍,積也擴大2倍。
3.概括規律
師:剛才大家的這個發現能不能用一句話概括呢?
生:兩個因數相乘,一個因數不變,另一個因數乘幾,積就乘幾
4.驗證規律
師:是不是其他的算式也是這樣呢?我們來舉例驗證一下
每人寫2組這樣的算式,完成后和同桌一起找一找這些算式是不是也有這樣的規律
匯報
5.完整規律
師:從這些算式中,我們還能看出什么規律嗎?剛才我們從上往下看,現在換個角度,從下往上看。有了什么想法了,就趕緊把它寫下來,然后很自己的同桌輕輕地說說看。
生:兩個因數相乘,一個因數不變,另一個因數乘 幾,積就乘 幾兩個因數相乘,一個因數不變,另一個因數除以幾,積就除以幾
師:同意嗎?也寫一組算式,和你的同桌說一說這個規律。
師:其實,這就是積的變化規律,我們還可以這樣說:兩個因數相乘,一個因數不變,另一個因數乘(或除以)幾,積就乘(或除以)幾
三、鞏固拓展,運用新知
師:現在就讓我們應用這個規律,解決數學上遇到的一些問題。
1. 兩個相乘,一個因數不變,另一個因數擴大5倍,積( );一個因數縮小7倍,另一個因數不變,積( ),一個因數不變,要想使積擴大24倍,另一個因數( )
2.12× 20 =240 26×11=261
12×(20÷4)= (26×2)×11=
3.根據8×50=400,直接寫出下面各題的積
16×50= 4×50= 32×50= 8×25=
4.利用規律,直接說出答案
25×20=500
25×( )=1000
25×( )=1500
25×( )=250
3、算一算,想一想,你能發現什么規律?
、僬埓蠹彝瓿上铝杏嬎悖⒃诮M內述說自己發現的規律
18×24=432
(18÷2)×(24×2)=
。18×2)×(24÷2)=
100×45=
。100×3)×(45÷3)=
(100÷5)×(45×5)=
小結:兩數相乘,一個因數乘(或除以)幾,另一個因數除以(或乘)它們的乘積不變。
、趹靡幝山鉀Q問題。
在□中填上運算符號,在○中填上數。
24×75=1800
。24□6)×(75×6)=1800
。24□3)×(75□○)=1800
36×104=3744
。36×4)×(104□4)=3744
。36□○)×(104□○)=3744
四、總結課堂
師:經過今天這節課,大家有什么收獲呢?