含字母系數(shù)的一元一次方程
教學(xué)目標(biāo)
1.使學(xué)生正確認(rèn)識(shí)含有字母系數(shù)的一元一次方程.
2.使學(xué)生掌握含有字母系數(shù)的一元一次方程的解法.
3.使學(xué)生會(huì)進(jìn)行簡單的公式變形.
4.培養(yǎng)學(xué)生由特殊到一般、由一般到特殊的邏輯思維能力.5.通過公式變形例題,培養(yǎng)學(xué)生解決實(shí)際問題的能力,激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣.
教學(xué)重點(diǎn):
(1)含有字母系數(shù)的一元一次方程的解法.
(2)公式變形.
教學(xué)難點(diǎn):
(1)對(duì)字母函數(shù)的理解,并能準(zhǔn)確區(qū)分字母系數(shù)與數(shù)字系數(shù)的區(qū)別與聯(lián)系.
(2)在公式中會(huì)準(zhǔn)確區(qū)分未知數(shù)與字母系數(shù),并進(jìn)行正確的公式變形.
教學(xué)方法
啟發(fā)式教學(xué)和討論式教學(xué)相結(jié)合
教學(xué)手段
多媒體
教學(xué)過程
(一)復(fù)習(xí)提問
提出問題:
1.什么是一元一次方程?
在學(xué)生答的基礎(chǔ)上強(qiáng)調(diào):(1)“一元”——一個(gè)未知數(shù);“一次”——未知數(shù)的次數(shù)是1.
2.解一元一次方程的步驟是什么?
答:(1)去分母、去括號(hào).
(2)移項(xiàng)——未知項(xiàng)移到等號(hào)一邊常數(shù)項(xiàng)移到等號(hào)另一邊.
注意:移項(xiàng)要變號(hào).
(3)合并同類項(xiàng)——提未知數(shù).
(4)未知項(xiàng)系數(shù)化為1——方程兩邊同除以未知項(xiàng)系數(shù),從而解得方程.
(二)引入新課
提出問題:一個(gè)數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù).
引導(dǎo)學(xué)生列出方程:ax=b(a≠0).
讓學(xué)生討論:
(1)這個(gè)方程中的未知數(shù)是什么?已知數(shù)是什么?(a、b是已知數(shù),x是未知數(shù))
(2)這個(gè)方程是不是一元一次方程?它與我們以前所見過的一元一次方程有什么區(qū)別與聯(lián)系?(這個(gè)方程滿足一元一次方程的定義,所以它是一元一次方程.)
強(qiáng)調(diào)指出:ax=b(a≠0)這個(gè)一元一次方程與我們以前所見過的一元一次方程最大的區(qū)別在于已知數(shù)是a、b(字母).a是x的系數(shù),b是常數(shù)項(xiàng).
(三)新課
1.含有字母系數(shù)的一元一次方程的定義
ax=b(a≠0)中對(duì)于未知數(shù)x來說a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程,今天我們就主要研究這樣的方程.
2.含有字母系數(shù)的一元一次方程的解法
教師提問:ax=b(a≠0)是一元一次方程,而a、b是已知數(shù),就可以當(dāng)成數(shù)看,就像解一般的一元一次方程一樣,如下解出方程:
ax=b(a≠0).
由學(xué)生討論這個(gè)解法的思路對(duì)不對(duì),解的過程對(duì)不對(duì)?
在學(xué)生討論的基礎(chǔ)上,教師歸納總結(jié)出含有字母函數(shù)的一元一次方程和過去學(xué)過的一元一次方程的解法的區(qū)別和聯(lián)系.
含有字母系數(shù)的一元一次方程的解法和學(xué)過的含有數(shù)字系數(shù)的一元一次方程的解法相同.(即仍需要采用去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、方程兩邊同除以未知數(shù)的系數(shù)等步驟.)
特別注意:用含有字母的式子去乘或者除方程的兩邊,這個(gè)式子的值不能為零.
3.講解例題
例1 解方程ax+b2=bx+a2(a≠b).
解:移項(xiàng),得 ax-bx=a2-b2,
合并同類項(xiàng),得(a-b)x=a2-b2.
∵a≠b,∴a-b≠0.
x=a+b.
注意:
1.在沒有特別說明的情況下,一般x、y、z表示未知數(shù),a、b、c表示已知數(shù).
2.在未知項(xiàng)系數(shù)化為1這一步是最易出錯(cuò)的一步,一定要說明未知項(xiàng)系數(shù)(式)不為零之后才可以方程兩邊同除以未知項(xiàng)系數(shù)(式).
3.方程的解是分式形式時(shí),一般要化成最簡分式或整式.
第 1 2 頁