等比數列的前n項和
, ②
②-①得 即 .
由此對于一般的等比數列,其前 項和 ,如何化簡?
(板書)等比數列前 項和公式
仿照公比為2的等比數列求和方法,等式兩邊應同乘以等比數列的公比 ,即
(板書) ③兩端同乘以 ,得
④,
③-④得 ⑤,(提問學生如何處理,適時提醒學生注重 的取值)
當 時,由③可得 (不必導出④,但當時設想不到)
當 時,由⑤得 .
于是
反思推導求和公式的方法——錯位相減法,可以求形如 的數列的和,其中 為等差數列, 為等比數列.
(板書)例題:求和: .
設 ,其中 為等差數列, 為等比數列,公比為 ,利用錯位相減法求和.
解: ,
兩端同乘以 ,得
,
兩式相減得
于是 .
說明:錯位相減法實際上是把一個數列求和問題轉化為等比數列求和的問題.
公式其它應用問題注重對公比的分類討論即可.
三、小結:
1.等比數列前 項和公式推導中蘊含的思想方法以及公式的應用;
2.用錯位相減法求一些數列的前 項和.
四、作業:略 .
五、板書設計:
等比數列前 項和公式例題