《2、5倍數(shù)的特征》教學(xué)反思
當(dāng)我們說要研究2、5的倍數(shù)的特征時,學(xué)生想當(dāng)然地會認為只要一個數(shù)一個數(shù)地研究就可以了。如果讓他們實際操作,他們很可能會寫了幾個數(shù)后,就下結(jié)論,當(dāng)然這時候他們下的結(jié)論也很可能是正確的。大部分老師在這樣的情況下,就會肯定學(xué)生的結(jié)論,然后進行練習(xí)鞏固。
但是教師并沒有滿足于此,而是抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度。僅僅幾個數(shù)就能得出結(jié)論了嗎?答案顯然是否定的,一項結(jié)論的得出不是這樣草率的。如果教師如此這般教學(xué),一次兩次不要緊,長久以來,學(xué)生也會形成草率的態(tài)度,以偏概全,缺乏一種科學(xué)的嚴(yán)謹(jǐn),這是很可怕的。
所以我們看到,首先教師引導(dǎo)學(xué)生確定了“小范圍”的意識,在數(shù)據(jù)比較多的時候,我們可以先確定一個范圍,在有限的時間里研究這個范圍中的數(shù)的特征,得到在1-100這個范圍內(nèi)5的倍數(shù)的特征,個位上的數(shù)字是5或0。這時候教師沒有滿足于此,而是引導(dǎo)學(xué)生認識到這個結(jié)論僅僅適用于1-100這個小范圍,是不是在所有不等于0的自然數(shù)中都使用呢?還需要研究。所以接下來在教師的引導(dǎo)下,學(xué)生開始認識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個位上的數(shù)字是5或0。只有進行了研究,才能得到正確的結(jié)論,最后在學(xué)習(xí)和生活中進行應(yīng)用。
2、感受“猜想”與“結(jié)論”的不同。
在教學(xué)2、5的倍數(shù)的特征之前,教師找了幾個學(xué)生訪談,想了解學(xué)生學(xué)習(xí)的前在狀態(tài),當(dāng)然所找的學(xué)生是各種層次都有的。對于2、5的倍數(shù)的特征,應(yīng)該說比較簡單,所以中等學(xué)生和優(yōu)等生都已經(jīng)知道了它們的特征——2的倍數(shù)肯定是雙數(shù),5的倍數(shù)末尾是5或0,只有個別學(xué)困生一無所知。同時有個奇怪的現(xiàn)象,所有知道這個結(jié)論的同學(xué)都認為這個結(jié)論非常正確,以后就能用這個結(jié)論來進行判斷,不需要進行驗證,當(dāng)然他們的結(jié)論獲得也僅僅是“知道”的過程,沒有經(jīng)歷“探究”過程。如果長此以往,學(xué)生僅僅是知識的接受者,而不是知識的探究者,以后將只習(xí)慣于被動接受,而不會主動發(fā)現(xiàn)。
所以,在教學(xué)中,當(dāng)學(xué)生找到1-100內(nèi)2和5的倍數(shù)特征時,教師追問學(xué)生,“是不是比100大的自然數(shù)中,也有這個特征呢?”學(xué)生異口同聲地都認為是。這里就需要教師幫助學(xué)生養(yǎng)成嚴(yán)謹(jǐn)科學(xué)的學(xué)習(xí)態(tài)度。我們看到,教師告訴學(xué)生是不是有這個特征,我們沒有研究過,所以只是我們的猜想。當(dāng)教師一點撥后,大部分學(xué)生還是比較認可的。確實,沒有經(jīng)過研究,怎么能知道是呢?
有了這樣的猜想,最后通過舉例的方法驗證后,學(xué)生沒有找到反例,這時教師才告訴學(xué)生,一開始的猜想現(xiàn)在變成了結(jié)論。雖然同樣是一句話,不同的時候有不同的界定,沒有經(jīng)過驗證前,只是猜想;只有研究后,猜想才可能變成結(jié)論。
相信學(xué)生不斷經(jīng)歷這種過程后,他們才會具備科學(xué)的態(tài)度,才會學(xué)會對自己所說的話負責(zé),才不會貿(mào)然下結(jié)論,當(dāng)然我們教師也要鼓勵學(xué)生大膽猜想。并用適當(dāng)?shù)姆椒▉眚炞C自己的猜想,從而得到正確的結(jié)論。
隨著新課改的不斷深入,我們教師在制定教學(xué)目標(biāo)時,不要再僅僅關(guān)注學(xué)生知識目標(biāo),更重要的是要關(guān)注學(xué)生的能力目標(biāo),只有從小培養(yǎng),從小滲透,那么我們學(xué)生對數(shù)學(xué)的認識才會更深刻,也才會在數(shù)學(xué)上有更大的造詣。