15.3 乘法公式
(2)要符合公式的結構特征才能運用平方差公式. (3)有些多項式與多項式的乘法表面上不能應用公式,但通過加法或乘法的交換律、結合律適當變形實質上能應用公式. [生]運算的最后結果應該是最簡才行. [師]同學們總結得很好.下面請同學們完成一組闖關練習.優(yōu)勝組選派一名代表做總結發(fā)言. ⅲ.隨堂練習 出示投影片: 計算: (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b) (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2) 解:(1)(a+b)(-b+a)=(a+b)(a-b)=a2-b2. (2)(-a-b)(a-b)=(-b-a)(-b+a)=(-b)2-a2=b2-a2. (3)(3a+2b)(3a-2b)=(3a)2-(2b)2=9a2-4b2. (4)(a5-b2)(a5+b2)=(a5)2-(b2)2=a10-b4. (5)(a+2b+2c)(a+2b-2c)=(a+2b)2-(2c)2 =(a+2b)(a+2b)-4c2 =a2+a•2b+2b•a+(2b)2-4c2 =a2+4ab+4b2-4c2 (6)(a-b)(a+b)(a2+b2) =(a2-b2)(a2+b2) =(a2)2-(b2)2=a4-b4. 優(yōu)勝組總結發(fā)言: 這些運算都可以通過變形后利用平方差公式.其中變形的形式有:位置變形;符號變形;系數(shù)變形;指數(shù)變形;項數(shù)變形;連用公式.關鍵還是在于理解公式特征,學會對號入座,有整體思想. ⅳ.課時小結 通過本節(jié)學習我們掌握了如下知識. (1)平方差公式 兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差.這個公式叫做乘法的平方差公式.即(a+b)(a-b)=a2-b2. (2)公式的結構特征 ①公式的字母a、b可以表示數(shù),也可以表示單項式、多項式; ②要符合公式的結構特征才能運用平方差公式; ③有些式子表面上不能應用公式,但通過適當變形實質上能應用公式.如:(x+y-z)(x-y-z)=[(x-z)+y][(x-z)-y]=(x-z)2-y2. ⅴ.課后作業(yè) 1.課本p179練習1、2. 2.課本p182~p183習題15.3─1題. ⅵ.活動與探究 1.計算:1234567892-123456788×123456790 2.解方程:5x+6(3x+2)(-2+3x)-54(x- )(x+ )=2. 過程: 1.看似數(shù)字很大,但觀察到:123456788=123456789-1,123456790=123456789+1,所以可以用平方差公式去化簡計算.