中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 教案大全 > 函數數學教案(精選17篇)

函數數學教案

發布時間:2023-09-07

函數數學教案(精選17篇)

函數數學教案 篇1

  教學目標:

  知識與技能

  1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

  2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數學問題。

  過程與方法

  1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

  2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

  情感與價值觀

  1、經歷函數概念的抽象概括過程,體會函數的模型思想。

  2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。

  教學重點:

  1、掌握函數概念。

  2、判斷兩個變量之間的關系是否可看作函數。

  3、能把實際問題抽象概括為函數問題。

  教學難點:

  1、理解函數的概念。

  2、能把實際問題抽象概括為函數問題。

  教學過程設計:

  一、創設問題情境,導入新課

  『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

函數數學教案 篇2

  目標:

  (1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

  (2)注重學生參與,聯系實際,豐富學生的感性認識,培養學生的良好的學習習慣

  重點難點:

  能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

  過程:

  一、試一試

  1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格 中,

  AB長x(m)123456789

  BC長(m)12

  面積y(m2)48

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發現,當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數,試寫出這個函數的關系式,

  對于1.,可讓學生根據表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數據的變化情況,提出問題:(1)從所填表格中,你能發現什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。

  對于2,可讓學生分組討論、交流,然后各組派代表發表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。

  對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數關系式.

  二、提出問題

  某商店將每 件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經過市場調查,發現這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?

  在這個問題中,可提出如下問題供學生思考并 回答:

  1.商品的利潤與售價、進價以及銷售量之間有什么關系?

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多 少元?

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  5.若設該商品每天的利潤為y元,求y與x的函數關系式。

  將函數關系式y=x(20-2x)(0 <x <10=化為:

  y=-2x2+20x (0<x<10)……………………………(1)

  將函數關系式y=(10-8-x)(100+100x)(0≤x≤2)化為:

  y =-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導學生觀察函數關系式(1)和(2),提出以下問題讓學生思考回答;

  (1)函數關系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?

  (分別是二次多項式 )

  (3)函數關系式(1)和(2)有什么共同特點?

  (都是用自變量的二次多項式來表示的)

  (4)本章導圖中的問題以及P1頁的問題2有什么共同特點 ?

  讓學生討論、交流,發表意見,歸結為:自變量x為何值時,函數y取得最大值。

  2.二次函數定義:形如y=ax2+bx+c (a、b、c是常數,a≠0)的函數叫做x的二次函數,a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.

  四、課堂練習

  1.(口答)下列函數中,哪些是二次函數?

  (1)y= 5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習第1,2題。

  五、小結

  1.請敘述二次函數的定義.

  2,許多實際問題可以轉化為二次函數來解決,請你聯系生活實 際,編一道二次函數應用題,并寫出函數關系式。

函數數學教案 篇3

  知識目標:理解函數的概念,能準確識別出函數關系中的自變量和函數

  能力目標:會用變化的量描述事物

  情感目標:回用運動的觀點觀察事物,分析事物

  重點:函數的概念

  難點:函數的概念

  教學媒體:多媒體電腦,計算器

  教學說明:注意區分函數與非函數的關系,學會確定自變量的取值范圍

  教學設計

  引入:

  信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

  ① 這張圖告訴我們哪些信息?

  ② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規律的?

  (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

  ① 這表告訴我們哪些信息?

  ② 這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

  一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

  范例:例1 判斷下列變量之間是不是函數關系:

  (5) 長方形的寬一定時,其長與面積;

  (6) 等腰三角形的底邊長與面積;

  (7) 某人的年齡與身高;

  活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發現變量和函數的關系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數關系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時,油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動2:練習教材9頁練習

  小結:(1)函數概念

  (2)自變量,函數值

  (3)自變量的取值范圍確定

  作業:18頁:2,3,4題

函數數學教案 篇4

  一、方程的根與函數的零點

  1、函數零點的概念:對于函數y=f(x),使f(x)=0 的實數x叫做函數的零點。(實質上是函數y=f(x)與x軸交點的橫坐標)

  2、函數零點的意義:方程f(x)=0 有實數根函數y=f(x)的圖象與x軸有交點函數y=f(x)有零點

  3、零點定理:函數y=f(x)在區間[a,b]上的圖象是連續不斷的,并且有f(a)f(b)0,那么函數y=f(x)在區間(a,b)至少有一個零點c,使得f( c)=0,此時c也是方程 f(x)=0 的根。

  4、函數零點的求法:求函數y=f(x)的零點:

  (1) (代數法)求方程f(x)=0 的實數根;

  (2) (幾何法)對于不能用求根公式的方程,可以將它與函數y=f(x)的圖象聯系起來,并利用函數的性質找出零點.

  5、二次函數的零點:二次函數f(x)=ax2+bx+c(a≠0).

  1)△0,方程f(x)=0有兩不等實根,二次函數的圖象與x軸有兩個交點,二次函數有兩個零點.

  2)△=0,方程f(x)=0有兩相等實根(二重根),二次函數的圖象與x軸有一個交點,二次函數有一個二重零點或二階零點.

  3)△0,方程f(x)=0無實根,二次函數的圖象與x軸無交點,二次函數無零點.

  二、二分法

  1、概念:對于在區間[a,b]上連續不斷且f(a)f(b)0的函數y=f(x),通過不斷地把函數f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

  2、用二分法求方程近似解的步驟:

  ⑴確定區間[a,b],驗證f(a)f(b)0,給定精確度ε;

  ⑵求區間(a,b)的中點c;

  ⑶計算f(c),

  ①若f(c)=0,則c就是函數的零點;

  ②若f(a)f(c)0,則令b=c(此時零點x0∈(a,c))

  ③若f(c)f(b)0,則令a=c(此時零點x0∈(c,b))

  (4)判斷是否達到精確度ε:即若|a-b|ε,則得到零點近似值為a(或b);否則重復⑵~⑷

  三、函數的應用:

  (1)評價模型: 給定模型利用學過的知識解模型驗證是否符合實際情況。

  (2)幾個增長函數模型:一次函數:y=ax+b(a0)

  指數函數:y=ax(a1) 指數型函數: y=kax(k1)

  冪函數: y=xn( nN*) 對數函數:y=logax(a1)

  二次函數:y=ax2+bx+c(a0)

  增長快慢:V(ax)V(xn)V(logax)

  解不等式 (1) log2x x2 (2) log2x 2x

  (3)分段函數的應用:注意端點不能重復取,求函數值先判斷自變量所在的區間。

  (4)二次函數模型: y=ax2+bx+c(a≠0) 先求函數的定義域,在求函數的對稱軸,看它在不在定義域內,在的話代進求出最值,不在的話,將定義域內離對稱軸最近的點代進求最值。

  (5)數學建模:

函數數學教案 篇5

  【教學目標:】

  1.通過對初中銳角三角函數定義的回憶,掌握任意角三角函數的定義法,并掌握用單位圓中的有向線段表示三角函數值.

  2.掌握已知角 終邊上一點坐標,求四個三角函數值.(即給角求值問題)

  【教學重點:】

  任意角的三角函數的定義.

  【教學難點:】

  任意角的三角函數的定義,正弦、余弦、正切這三種三角函數的幾何表示.

  【教學用具:】

  直尺、圓規、投影儀.

  【教學步驟:】

  1.設置情境

  角的范圍已經推廣,那么對任一角 是否也能像銳角一樣定義其四種三角函數呢?本節課就來討論這一問題.

  2.探索研究

  (1)復習回憶銳角三角函數

  我們已經學習過銳角三角函數,知道它們都是以銳角 為自變量,以比值為函數值,定義了角 的正弦、余弦、正切、余切的三角函數,本節課我們研究當角 是一個任意角時,其三角函數的定義及其幾何表示.

  (2)任意角的三角函數定義

  如圖1,設 是任意角, 的終邊上任意一點 的坐標是 ,當角 在第一、二、三、四象限時的情形,它與原點的距離為 ,則 .

  定義:①比值 叫做 的正弦,記作 ,即 .

  ②比值 叫做 的余弦,記作 ,即 .

  圖1

  ③比值 叫做 的正切,記作 ,即 .

  同時提供顯示任意角的三角函數所在象限的課件

  提問:對于確定的角 ,這三個比值的大小和 點在角 的終邊上的位置是否有關呢?

  利用三角形相似的知識,可以得出對于角 ,這三個比值的大小與 點在角 的終邊上的位置無關,只與角 的大小有關.

  請同學們觀察當 時, 的終邊在 軸上,此時終邊上任一點 的橫坐標 都等于0,所以 無意義,除此之外,對于確定的角 ,上面三個比值都是惟一確定的.把上面定義中三個比的前項、后項交換,那么得到另外三個定義.

  ④比值 叫做 的余切,記作 ,則 .

  ⑤比值 叫做 的正割,記作 ,則 .

  ⑥比值 叫做 的余割,記作 ,則 .

  可以看出:當 時, 的終邊在 軸上,這時 的縱坐標 都等于0,所以 與 的值不存在,當 時, 的值不存在,除此之外,對于確定的角 ,比值 , , 分別是一個確定的實數,所以我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數值的函數,以上六種函數統稱三角函數.

  (3)三角函數是以實數為自變量的函數

  對于確定的角 ,如圖2所示, , , 分別對應的比值各是一個確定的實數,因此,正弦,余弦,正切分別可看成從一個角的集合到一個比值的集合的映射,它們都是以角為自變量,以比值為函數值的函數,當采用弧度制來度量角時,每一個確定的角有惟一確定的弧度數,這是一個實數,所以這幾種三角函數也都可以看成是以實數為自變量,以比值為函數值的函數.

  即:實數角(其弧度數等于這個實數)三角函數值(實數)

  (4)三角函數的一種幾何表示

  利用單位圓有關的有向線段,作出正弦線,余弦線,正切線,如下圖3.

  圖3

  設任意角 的頂點在原點 ,始邊與 軸的非負半軸重合,終邊與單位圓相交于點 ,過 作 軸的垂線,垂足為 ;過點 作單位圓的切線,這條切線必然平行于軸,設它與角 的終邊(當 為第一、四象限時)或其反向延長線(當 為第二、三象限時)相交于 ,當角 的終邊不在坐標軸上時,我們把 , 都看成帶有方向的線段,這種帶方向的線段叫有向線段.由正弦、余弦、正切函數的定義有:

  這幾條與單位圓有關的有向線段 叫做角 的正弦線、余弦線、正切線.當角 的終邊在 軸上時,正弦線、正切線分別變成一個點;當角 的終邊在 軸上時,余弦線變成一個點,正切線不存在.

  (5)例題講評

函數數學教案 篇6

  一、學生起點分析

  在七年級上期學習了用字母表示數,體會了字母表示數的意義,學會了探索具體事物之間的關系和變化的規律,并用符號進行了表示;在七年級下期又學習了“變量之間的關系”,使學生在具體的情境中,體會了變量之間的相依關系的普遍性,感受了學習變量之間的關系的必要性和重要性,并且積累了一定的研究變量之間關系的一些方法和初步經驗,為學習本章的函數知識奠定了一定的基礎。

  二、教學任務分析

  《函數》是義務教育課程標準北師大版實驗教科書八年級(上)第四章《一次函數》第一節的內容。教材中的函數是從具體實際問題的數量關系和變化規律中抽象出來的,主要是通過學生探索實際問題中存在的大量的變量之間關系,進而抽象出函數的概念。與原傳統教材相比,新教材更注重感性材料,讓學生分析了大量的問題,感受到在實際問題中存在兩個變量,而且這兩個變量之間存在一定的關系,它們的表示方式是多樣地,如可以通過列表的方法表示,可以通過畫圖像的方法表示,還可以通過列解析式的方法表示,但都有著共性:其中一個變量依賴于另一個變量。

  本節內容是在七年級知識的基礎上,繼續通過對變量間的關系的考察,讓學生初步體會函數的概念,為后續學習打下基礎。同時,函數的學習可以使學生體會到數形結合的思想方法,感受事物是相互聯系和規律的變化。一次本節課教學目標定位為:

  1、初步掌握函數概念,能判斷兩個變量間的關系是否可以看成函數;

  2、根據兩個變量之間的關系式,給定其中一個量,相應的會求出另一個量的值;

  3、了解函數的三種表示方法。

  4、通過函數概念的學習,初步形成學生利用函數觀點認識現實世界的意識和能力;

  5、在函數概念形成的過程中,培養學生聯系實際、善于觀察、樂于探索和勤于思考的精神

  對學生來講本節課的難點在于對函數概念的理解;

  四、教學準備

  教具:教材,課件,電腦

  學具:教材,筆,練習本

  五、教學過程設計

  本節課設計了六個教學環節:第一環節:創設情境、導入新課;第二環節:展現背景,提供概念抽象的素材;第三環節:概念的抽象;第四環節:概念辨析與鞏固;第五環節:課時小結;第六環節:布置作業

  第一環節:創設情境、導入新課

  內容:

  展示一些與學生實際生活有關的圖片,如心電圖片,天氣隨時間的變化圖片,拋擲鉛球球形成的軌跡,k線圖等,提請學生思考問題。

  意圖:

  承接上一學期變量關系的學習,讓學生感受到變量之間關系的是通過多種形式表現出來的,感受研究函數的必要性。

  效果:

  生活實例,激發了學生的研究熱情,起到很好的導入效果。

  第二環節:展現背景,提供概念抽象的素材

  內容:

  問題1、你去過游樂園嗎?你坐過摩天輪嗎?你能描述一下坐摩天輪的感覺嗎?

  當人坐在摩天輪上時,人的高度隨時間在變化,那么變化有規律嗎?

  摩天輪上一點的高度h與旋轉時間t之間有一定的關系,右圖就反映了時間t(分)與摩天輪上一點的高度h(米)之間的關系。你能從上圖觀察出,有幾個變化的量嗎?當t分別取3,6,10時,相應的h是多少?給定一個t值,你都能找到相應的h值嗎?

  問題2、瓶子或罐頭盒等圓柱形的物體,常常如下圖這樣堆放。隨著層數的增加,物體的總數是如何變化的?

  問題3、一定質量的氣體在體積不變時,假若溫度降低到—273℃,則氣體的壓強為零。因此,物理學把—273℃作為熱力學溫度的零度。熱力學溫度T(K)與攝氏溫度t(℃)之間有如下數量關系:T=t+273,T≥0。

  (1)當t分別等于—43,—27,0,18時,相應的熱力學溫度T是多少?

  (2)給定一個大于—273℃的t值,你能求出相應的T值嗎?

  意圖:

  通過上面三個問題的展示,使學生們初步感受到:現實生活中存在大量的變量間的關系,并且一個變量是隨著另一個變量的變化而變化的;變量之間的關系表示方式是多樣的(圖象、列表和解析式等)。

  效果:

  通過圖片展示和三個問題的探究,使學生感受生活中的確存在大量的兩個變量之間的關系,并且這兩個變量之間的關系可以通過三種不同的方式表現,初步了解三種方式表示兩個變量之間關系的各自特點。

  第三環節:概念的抽象

  內容:

  1、引導學生思考以上三個問題的共同點,進而揭示出函數的概念:

  在上面的問題中,都有兩個變量,給定其中一個變量(自變量)的值,相應的就確定了另一個變量(因變量)的值。

  4、1函數:同步檢測

  1、張爺爺晚飯以后外出散步,碰到老鄰居,交談了一會兒,返回途中在讀報欄前看了一會兒報,如圖是據此情境畫出的圖象,請你回答下面的問題:

  (1)張爺爺是在什么地方碰到老鄰居的,交談了多長時間?

  (2)讀報欄大約離家多遠?

  (3)圖中反映了哪些變量之間的關系?其中哪個是自變量?哪個是因變量?

函數數學教案 篇7

  本文題目:高一數學教案:對數函數及其性質

  2.2.2 對數函數及其性質(二)

  內容與解析

  (一) 內容:對數函數及其性質(二)。

  (二) 解析:從近幾年高考試題看,主要考查對數函數的性質,一般綜合在對數函數中考查.題型主要是選擇題和填空題,命題靈活.學習本部分時,要重點掌握對數的運算性質和技巧,并熟練應用.

  一、 目標及其解析:

  (一) 教學目標

  (1) 了解對數函數在生產實際中的簡單應用.進一步理解對數函數的圖象和性質;

  (2) 學習反函數的概念,理解對數函數和指數函數互為反函數,能夠在同一坐標上看出互為反函數的兩個函數的圖象性質..

  (二) 解析

  (1)在對數函數 中,底數 且 ,自變量 ,函數值 .作為對數函數的三個要點,要做到道理明白、記憶牢固、運用準確.

  (2)反函數求法:①確定原函數的值域即新函數的定義域.②把原函數y=f(x)視為方程,用y表示出x.③把x、y互換,同時標明反函數的定義域.

  二、 問題診斷分析

  在本節課的教學中,學生可能遇到的問題是不易理解反函數,熟練掌握其轉化關系是學好對數函數與反函數的基礎。

  三、 教學支持條件分析

  在本節課一次遞推的教學中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學生順利抓住老師上課思路,節省老師板書時間,讓學生盡快地進入對問題的分析當中。

  四、 教學過程

  問題一. 對數函數模型思想及應用:

  ① 出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升.

  (Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關系?

  (Ⅱ)純凈水 摩爾/升,計算純凈水的酸堿度.

  ②討論:抽象出的函數模型? 如何應用函數模型解決問題? 強調數學應用思想

  問題二.反函數:

  ① 引言:當一個函數是一一映射時, 可以把這個函數的因變量作為一個新函數的自變量, 而把這個函數的自變量新的函數的因變量. 我們稱這兩個函數為反函數(inverse function)

  ② 探究:如何由 求出x?

  ③ 分析:函數 由 解出,是把指數函數 中的自變量與因變量對調位置而得出的. 習慣上我們通常用x表示自變量,y表示函數,即寫為 .

  那么我們就說指數函數 與對數函數 互為反函數

  ④ 在同一平面直角坐標系中,畫出指數函數 及其反函數 圖象,發現什么性質?

  ⑤ 分析:取 圖象上的幾個點,說出它們關于直線 的對稱點的坐標,并判斷它們是否在 的圖象上,為什么?

  ⑥ 探究:如果 在函數 的圖象上,那么P0關于直線 的對稱點在函數 的圖象上嗎,為什么?

  由上述過程可以得到什么結論?(互為反函數的兩個函數的圖象關于直線 對稱)

  ⑦練習:求下列函數的反函數: ;

  (師生共練 小結步驟:解x ;習慣表示;定義域)

  (二)小結:函數模型應用思想;反函數概念;閱讀P84材料

  五、 目標檢測

  1.(20xx全國卷Ⅱ文)函數y= (x 0)的反函數是

  A. (x 0) B. (x 0) C. (x 0) D. (x 0)

  1.B 解析:本題考查反函數概念及求法,由原函數x 0可知A、C錯,原函數y 0可知D錯,選B.

  2. (20xx廣東卷理)若函數 是函數 的反函數,其圖像經過點 ,則 ( )

  A. B. C. D.

  2. B 解析: ,代入 ,解得 ,所以 ,選B.

  3. 求函數 的反函數

  3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數的反函數為 .

  【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:對數函數及其性質能給您帶來幫助!

函數數學教案 篇8

  1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。

  (1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。

  (2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。

  2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。

  3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。

  高一數學對數函數教案:教材分析

  (1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。

  (2) 本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。

  (3) 本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。

  高一數學對數函數教案:教法建議

  (1) 對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。

  (2) 在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

函數數學教案 篇9

  第一教時

  教材:

  角的概念的推廣

  目的:

  要求學生掌握用“旋轉”定義角的概念,并進而理解“正角”“負角”“象限角”“終邊相同的角”的含義。

  過程:

  一、提出課題:“三角函數”

  回憶初中學過的“銳角三角函數”——它是利用直角三角形中兩邊的比值來定義的。相對于現在,我們研究的三角函數是“任意角的三角函數”,它對我們今后的學習和研究都起著十分重要的作用,并且在各門學科技術中都有廣泛應用。

  二、角的概念的推廣

  1.回憶:初中是任何定義角的?(從一個點出發引出的兩條射線構成的幾何圖形)這種概念的優點是形象、直觀、容易理解,但它的弊端在于“狹隘”

  2.講解:“旋轉”形成角(P4)

  突出“旋轉” 注意:“頂點”“始邊”“終邊”

  “始邊”往往合于軸正半軸

  3.“正角”與“負角”——這是由旋轉的方向所決定的。

  記法:角 或 可以簡記成

  4.由于用“旋轉”定義角之后,角的范圍大大地擴大了。

  1° 角有正負之分 如:a=210° b=-150° g=-660°

  2° 角可以任意大

  實例:體操動作:旋轉2周(360°×2=720°) 3周(360°×3=1080°)

  3° 還有零角 一條射線,沒有旋轉

  三、關于“象限角”

  為了研究方便,我們往往在平面直角坐標系中來討論角

  角的頂點合于坐標原點,角的始邊合于 軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個角是第幾象限的角(角的終邊落在坐標軸上,則此角不屬于任何一個象限)

  例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

  585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等

  四、關于終邊相同的角

  1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

  2.終邊相同的角都可以表示成一個0°到360°的角與 個周角的和

  390°=30°+360°

  -330°=30°-360° 30°=30°+0×360°

  1470°=30°+4×360°

  -1770°=30°-5×360°

  3.所有與a終邊相同的角連同a在內可以構成一個集合

  即:任何一個與角a終邊相同的角,都可以表示成角a與整數個周角的和

  4.例一 (P5 略)

  五、小結: 1° 角的概念的推廣

  用“旋轉”定義角 角的范圍的擴大

  2°“象限角”與“終邊相同的角”

  六、作業: P7 練習1、2、3、4

  習題1.4 1

函數數學教案 篇10

  一、目的要求

  1、使學生初步理解一次函數與正比例函數的概念。

  2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。

  二、內容分析

  1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。

  2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。

  3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數、反比例函數的學習方法。

  三、教學過程

  復習提問:

  1、什么是函數?

  2、函數有哪幾種表示方法?

  3、舉出幾個函數的例子。

  新課講解:

  可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

  (1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)

  (2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)

  (3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設問,最后給出一次函數的定義。

  一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。

  對這個定義,要注意:

  (1)x是變量,k,b是常數;

  (2)k≠0(當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)

  由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。

  在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:

  兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

函數數學教案 篇11

  一、教學目的

  1.使學生初步理解二次函數的概念。

  2.使學生會用描點法畫二次函數y=ax2的圖象。

  3.使學生結合y=ax2的圖象初步理解拋物線及其有關的概念。

  二、教學重點、難點

  重點:對二次函數概念的初步理解。

  難點:會用描點法畫二次函數y=ax2的圖象。

  三、教學過程

  復習提問

  1.在下列函數中,哪些是一次函數?哪些是正比例函數?

  (1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2—2。

  2.什么是一無二次方程?

  3.怎樣用找點法畫函數的圖象?

  新課

  1.由具體問題引出二次函數的定義。

  (1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數關系式。

  (2)已知一個矩形的周長是60m,一邊長是Lm,寫出這個矩形的面積S(m2)與這個矩形的一邊長L之間的函數關系式。

  (3)農機廠第一個月水泵的產量為50臺,第三個月的產量y(臺)與月平均增長率x之間的函數關系如何表示?

  解:(1)函數解析式是S=πR2;

  (2)函數析式是S=30L—L2;

  (3)函數解析式是y=50(1+x)2,即y=50x2+100x+50。

  由以上三例啟發學生歸納出:

  (1)函數解析式均為整式;

  (2)處變量的最高次數是2。

  我們說三個式子都表示的是二次函數。

  一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數,請注意這里b,c沒有限制,而a≠0。

  2.畫二次函數y=x2的圖象。

函數數學教案 篇12

  教學目標:

  知識目標:

  1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

  2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數學問題。

  能力目標:

  1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

  2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

  情感目標:

  1、經歷函數概念的抽象概括過程,體會函數的模型思想。

  2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。

  教學重點:

  掌握函數概念。

  判斷兩個變量之間的關系是否可看作函數。

  能把實際問題抽象概括為函數問題。

  教學難點:

  理解函數的概念。

  能把實際問題抽象概括為函數問題。

  教學過程設計:

  一、創設問題情境,導入新課

  『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過嗎?

  ……

  『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?

  『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。

  『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。

  大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對于給定的時間t,相應的高度h確定嗎?

  『生』:確定。

  『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

  『生』:研究的對象有兩個,是時間t和高度h。

  『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。

  二、新課學習

  做一做

  (1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?

  填寫下表:

  層數n 1 2 3 4 5 … 物體總數y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

  『生』:變量有兩個,是層數與圓圈總數。

  (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

  ①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

  ②給定一個V值,你能求出相應的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

  『生』:相同點是:這三個問題中都研究了兩個變量。

  不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。

  『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

  函數的概念

  在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

  一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

  三、隨堂練習

  書P152頁 隨堂練習1、2、3

  四、本課小結

  初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。

  在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。

  函數的三種表達式:

  圖象;(2)表格;(3)關系式。

  五、探究活動

  為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?

  (答案:Y=1.8x-6或)

  六、課后作業

  習題6.1

函數數學教案 篇13

  導學目標

  1. 通過已學過的函數特別是二次函數,理解函數的單調性及其幾何意義;

  2. 能夠熟練應用定義判斷數在某區間上的單調性;

  3. 學會運用函數圖象理解和研究函數的性質.

  學習過程(預習教材P27~ P29,找出疑惑之處)

  引言:函數是描述事物運動變化規律的數學模型,那么能否發現變化中保持不變的特征呢?

  復習1:觀察下列各個函數的圖象.

  探討:隨x的增大, y的值有什么變化?

  復習2:畫出函數 、 的圖象.

  合作探究

  思考:根據 、 的圖象進行討論:隨x的增大,函數值怎樣變化?當x x 時,f(x )與f(x )的大小關系怎樣?

  問題:一次函數、二次函數和反比例函數,在什么區間函數有怎樣的增大或減小的性質?

  新知:

  反思:

  ① 圖象如何表示單調增、單調減?② 所有函數是不是都具有單調性?

  ③ 函數 的單調遞增區間是 ,單調遞減區間是 .

  試試:如圖,定義在[-5,5]上的f(x),根據圖象說出單調區間及單調性.

  學習過程

  例1 根據下列函數的圖象,指出它們的單調區間及單調性,并運用定義進行證明.

  (1) ; (2) .

  ﹡例2求證 的(0,1)上是減函數,在 是增函數.

  例3 判斷函數 在區間 上的單調性并證明.

  課堂小結

  1. 增函數、減函數、單調區間的定義;

  2. 判斷函數單調性的方法(圖象法、定義法).

  3. 證明函數單調性的步驟:取值作差變形 定號下結論.

  知識拓展

  函數 的增區間有 、 ,減區間有 、 .

  學習評價

  1. 函數 的單調增區間是( )

  A. B. C. R D.不存在

  2. 如果函數 在R上單調遞減,則( )

  A. B. C. D.

  3. 在區間 上為增函數的是( )

  A. B.

  C. D.

  4. 函數 的單調性是 .

  5. 函數 的單調遞增區間是 ,單調遞減區間是 .

  課后作業

  1. 討論 的單調性并證明.

  2. 討論 的單調性.

  3. 指出下列函數的單調區間及單調性.

  (1) ; (2) .

  4. 證明函數 在定義域上是減函數。

  5. 證明: 在 上是減函數。

  6. 已知函數 在 上為增函數,且 ,試判斷 在 上的單調性并給出證明過程。

  7. 作出函數 的圖像,并指出函數 的單調區間。

  8. 已知函數 在 上是增函數,求實數 的取值范圍。

函數數學教案 篇14

  教學目標

  (一)知道函數圖象的意義;

  (二)能畫出簡單函數的圖象,會列表、描點、連線;

  (三)能從圖象上由自變量的值求出對應的函數的近似值。

  教學重點和難點

  重點:認識函數圖象的意義,會對簡單的函數列表、描點、連線畫出函數圖象。

  難點:對已恬圖象能讀圖、識圖,從圖象解釋函數變化關系。

  教學過程設計

  (一)復習

  1.什么叫函數?

  2.什么叫平面直角坐標系?

  3.在坐標平面內,什么叫點的橫坐標?什么叫點的縱坐標?

  4.如果點A的橫坐標為3,縱坐標為5,請用記號表示A(3,5).

  5.請在坐標平面內畫出A點。

  6.如果已知一個點的坐標,可在坐標平面內畫出幾個點?反過來,如果坐標平面內的一個點確定,這個點的坐標有幾個?這樣的點和坐標的對應關系,叫做什么對應?(答:叫做坐標平面內的點與有序實數對一一對應)

  (二)新課

  我們在前幾節課已經知道,函數關系可以用解析式表示,像y=2x+1就表示以x 為自變量時,y是x的函數。

  這個函數關系中,y與x的函數。

  這個函數關系中,y與x的對應關系,我們還可通知在坐標平面內畫出圖象的方法來表示。

函數數學教案 篇15

  三角函數的誘導公式

  一、指導思想與理論依據

  數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。

  二.教材分析

  三角函數的誘導公式是普通高中課程標準實驗教科書(人教a版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角 與終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.

  三.學情分析

  本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.

  四.教學目標

  (1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;

  (2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;

  (3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;

  (4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.

  五.教學重點和難點

  1.教學重點

  理解并掌握誘導公式.

  2.教學難點

  正確運用誘導公式,求三角函數值,化簡三角函數式.

  六.教法學法以及預期效果分析

  “授人以魚不如授之以魚”, 作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法, 如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

  1.教法

  數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.

  在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”, 由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.

  2.學法

  “現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

  在本節課的教學過程中,本人引導學生的學法為思考問題 共同探討 解決問題 簡單應用 重現探索過程 練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.

  3.預期效果

  本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

  七.教學流程設計

  (一)創設情景

  1.復習銳角300,450,600的三角函數值;

  2.復習任意角的三角函數定義;

  3.問題:由 ,你能否知道sin2100的值嗎?引如新課.

  設計意圖

  自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

  (二)新知探究

  1. 讓學生發現300角的終邊與2100角的終邊之間有什么關系;

  2.讓學生發現300角的終邊和2100角的終邊與單位圓的交點為 、 的坐標有什么關系;

  3.sin2100與sin300之間有什么關系.

  設計意圖

  由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角 與 的三角函數值的關系做好鋪墊.

  (三)問題一般化

函數數學教案 篇16

  I.定義與定義表達式一般地,自變量x和因變量y之間存在如下關系:

  y=ax^2+bx+c

  (a,b,c為常數,a0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式一般式:y=ax^2+bx+c(a,b,c為常數,a0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

  III.二次函數的圖像在平面直角坐標系中作出二次函數y=x^2的圖像,

  可以看出,二次函數的圖像是一條拋物線。

函數數學教案 篇17

  〖大綱要求〗

  1. 理解二次函數的概念;

  2. 會把二次函數的一般式化為頂點式,確定圖象的頂點坐標、對稱軸和開口方向,會用描點法畫二次函數的圖象;

  3. 會平移二次函數y=ax2(a≠0)的圖象得到二次函數y=a(ax+m)2+k的圖象,了解特殊與一般相互聯系和轉化的思想;

  4. 會用待定系數法求二次函數的解析式;

  5. 利用二次函數的圖象,了解二次函數的增減性,會求二次函數的圖象與x軸的交點坐標和函數的最大值、最小值,了解二次函數與一元二次方程和不等式之間的聯系,數學教案-二次函數。

  內容

  (1)二次函數及其圖象

  如果y=ax2+bx+c(a,b,c是常數,a≠0),那么,y叫做x的二次函數。

  二次函數的圖象是拋物線,可用描點法畫出二次函數的圖象。

  (2)拋物線的頂點、對稱軸和開口方向

  拋物線y=ax2+bx+c(a≠0)的頂點是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

  20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點M離墻1米,離地面米,則水流下落點B離墻距離OB是( )

  (A)2米 (B)3米 (C)4米 (D)5米

  三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)

  21.已知:直線y=x+k過點A(4,-3)。(1)求k的值;(2)判斷點B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個象限。

  22.已知拋物線經過A(0,3),B(4,6)兩點,對稱軸為x=,

  (1) 求這條拋物線的解析式;

  (2) 試證明這條拋物線與X軸的兩個交點中,必有一點C,使得對于x軸上任意一點D都有AC+BC≤AD+BD。

  23.已知:金屬棒的長1是溫度t的一次函數,現有一根金屬棒,在O℃時長度為200cm,溫度提高1℃,它就伸長0.002cm。

  (1) 求這根金屬棒長度l與溫度t的函數關系式;

  (2) 當溫度為100℃時,求這根金屬棒的長度;

  (3) 當這根金屬棒加熱后長度伸長到201.6cm時,求這時金屬棒的溫度。

  24.已知x1,x2,是關于x的方程x2-3x+m=0的兩個不同的實數根,設s=x12+x22

  (1) 求S關于m的解析式;并求m的取值范圍;

  (2) 當函數值s=7時,求x13+8x2的值;

  25.已知拋物線y=x2-(a+2)x+9頂點在坐標軸上,求a的值。

  26、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

  (1) 四邊形CGEF的面積S關于x的函數表達式和X的取值范圍;

  (2) 當x為何值時,S的數值是x的4倍。

  27、國家對某種產品的稅收標準原定每銷售100元需繳稅8元(即稅率為8%),臺洲經濟開發區某工廠計劃銷售這種產品m噸,每噸2000元。國家為了減輕工人負擔,將稅收調整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴大了生產,實際銷售比原計劃增加2x%。

  (1) 寫出調整后稅款y(元)與x的函數關系式,指出x的取值范圍;

  (2) 要使調整后稅款等于原計劃稅款(銷售m噸,稅率為8%)的78%,求x的值.

  28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點為A,與x軸的交點為B,C(B點在C點左邊)

  (1) 寫出A,B,C三點的坐標;

  (2) 設m=a2-2a+4試問是否存在實數a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說明理由;

  (3) 設m=a2-2a+4,當∠BAC最大時,求實數a的值。

  習題2:

  一.填空(20分)

  1.二次函數=2(x - )2 +1圖象的對稱軸是 。

  2.函數y= 的自變量的取值范圍是 。

  3.若一次函數y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。

  4.已知關于的二次函數圖象頂點(1,-1),且圖象過點(0,-3),則這個二次函數解析式為 。

  5.若y與x2成反比例,位于第四象限的一點P(a,b)在這個函數圖象上,且a,b是方程x2-x -12=0的兩根,則這個函數的關系式 。

  6.已知點P(1,a)在反比例函數y= (k≠0)的圖象上,其中a=m2+2m+3(m為實數),則這個函數圖象在第 象限。

  7. x,y滿足等式x= ,把y寫成x的函數 ,其中自變量x的取值范圍是 。

  8.二次函數y=ax2+bx+c+(a 0)的圖象如圖,則點P(2a-3,b+2)

  在坐標系中位于第 象限

  9.二次函數y=(x-1)2+(x-3)2,當x= 時,達到最小值 。

  10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點,已知x1x2=x1+x2+49,要使拋物線經過原點,應將它向右平移 個單位。

  二.選擇題(30分)

  11.拋物線y=x2+6x+8與y軸交點坐標( )

  (A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

  12.拋物線y=- (x+1)2+3的頂點坐標( )

  (A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

  13.如圖,如果函數y=kx+b的圖象在第一、二、三象限,那么函數y=kx2+bx-1的圖象大致是( )

  14.函數y= 的自變量x的取值范圍是( )

  (A)x 2 (B)x- 2且x 1 (D)x 2且x –1

  Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

  ∵5。10,lnЛ>0,logЛ0。51,log0。50。6log0。2(3x+3)

  師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要

  使函數有意義。若函數中含有分母,分母不為零;有偶次根式,

  被開方式大于或等于零;若函數中有對數的形式,則真數大于

  零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求

  它們共同作用的結果。)

  生:分母2x-1≠0且偶次根式的被開方式log0。8x-1≥0,且真數x>0。

  板書:

  解:∵ 2x-1≠0 x≠0。5

  log0。8x-1≥0 , x≤0。8

  x>0 x>0

  ∴x(0,0。5)∪(0。5,0。8〕

  師:接下來我們一起來解這個不等式。

  分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

  再根據對數函數的單調性求解。

  師:請你寫一下這道題的解題過程。

  生:

  解: x2+2x-3>0 x1

  (3x+3)>0 , x>-1

  x2+2x-30,a≠1)

  ①求它的單調區間;②當00, b>0, 且 a≠1)

  ①求它的定義域;②討論它的奇偶性;

  ③討論它的單調性。

  ⑷已知函數y=loga(ax-1) (a>0,a≠1),

  ①求它的定義域;

  ②當x為何值時,函數值大于1;

  ③討論它的單調性。

函數數學教案(精選17篇) 相關內容:
  • 《EXCEL中函數公式的運用》教學設計

    張寶玉[課 題] 《excel中函數公式的運用》[教 材] 海南出版社、三環出版社出版的《信息技術》七年級下冊第二章第四節中第三個知識點的內容[課 型] 新授課[課 時] 1課時[教材分析]本節課的內容是函數和公式在excel中的使用,教材從實際生活...

  • 函數的最大值和最小值教案

    1.本節教材的地位與作用 本節主要研究閉區間上的連續函數最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經會求某些函數的最值,并且已經掌握了性質:“如果f(x)是閉區間[a,b]上的連續函數,那么f(x)在閉區間[a,b]上有...

  • 2.4反函數(三課時)

    教學目的:1.掌握反函數的概念和表示法,會求一個函數的反函數 2.互為反函數的圖象間的關系. 3.反函數性質的應用.教學重點:反函數的定義和求法,互為反函數的圖象間的關系.教學難點:反函數的定義,反函數性質的應用.教學過程:第一課時...

  • 4.9函數y=Asin(ωx+φ) 的圖象(3)

    教學目的:1.會用“五點法”畫y=asin(ωx+ )的圖象;2.會用圖象變換的方法畫y=asin(ωx+ )的圖象;3.會求一些函數的振幅、周期、最值等.教學重點:1.“五點法”畫y=asin(ωx+ )的圖象;2.圖象變換過程的理解;教學難點:多種變換的...

  • 4.9函數y=Asin(ωx+φ) 的圖象(2)

    教學目的:1.會用“五點法”畫y=asin(ωx+ )的圖象;2.會用圖象變換的方法畫y=asin(ωx+ )的圖象;3.會求一些函數的振幅、周期、最值等.教學重點:1.“五點法”畫y=asin(ωx+ )的圖象;2.圖象變換過程的理解;3.一些相關概念.教學難...

  • 函數

    教學目標 1.理解函數的概念,了解函數的三種表示法,會求函數的定義域. (1)了解函數是非凡的映射,是非空數集a到非空數集b的映射.能理解函數是由定義域,值域,對應法則三要素構成的整體. (2)能正確熟悉和使用函數的三種表示法:解析法,列表法,...

  • 4.9函數y=Asin(ωx+φ) 的圖象(5)

    教學目的:三角函數圖象和性質的綜合應用 教學重點、難點:三角函數圖象和性質的綜合應用.一、例題: 例1 (1)已知 ,且 是第一象限角,則 的集合為( ) a. b. c. d. (2)函數 的最大值與最小值依次分別為 a. b. c. d. (3)在銳角 中...

  • 4.9函數y=Asin(ωx+φ) 的圖象(1)

    教學目的:1.理解振幅、周期、相位的定義;2.會用五點法畫出函數y=asinx、y=asinωx和 的圖象,明確a、ω與φ對函數圖象的影響作用;并會由y=asinx的圖象得出y=asinx`y=asinωx和 的圖象。...

  • 函數及其表示、解析式(學生學案)

    知識結構:1.函數的基本概念(1)函數的定義:設a、b是非空數集,如果按照某種確定的對應關系f,使對于集合a中的任意一個數x,在集合b中都有唯一確定的數f(x)和它對應,那么稱f:a→b為從集合a到集合b的一個函數,記作:y=f(x),x∈a.2.映...

  • 函數

    教學目標 1.理解函數的概念,了解函數的三種表示法,會求函數的定義域.(1)了解函數是特殊的映射,是非空數集a到非空數集b的映射.能理解函數是由定義域,值域,對應法則三要素構成的整體.(2)能正確認識和使用函數的三種表示法:解析法...

  • 4.9函數y=Asin(ωx+φ) 的圖象(6)

    教學目的:三角函數圖象和性質的綜合應用教學重點、難點:三角函數圖象和性質的綜合應用.一、例題: 例1 若 ,討論函數 的單調性;例2已知δabc三內角a,b,c成等差數列,( abc)且tana+tanc=3+ ,試求出角a、b、c的大小。...

  • 4.9函數y=Asin(ωx+φ) 的圖象(4)

    教學目的:三角函數圖象和性質的綜合應用 教學重點、難點:三角函數圖象和性質的綜合應用.一、例題: 例1 θ是三角形的一個內角,且關于x 的函數f(x)=sin(x+θ)+cos(x-θ)是偶函數,求θ的值.例2 已知 ,試確定函數的奇偶性、單調性.例3...

  • 函數知識歸納

    高中1. 映射定義:設非空數集a,b,若對集合a中任一元素a,在集合b中有唯一元素b與之對應,則稱從a到b的對應為映射2. 若集合a中有m個元素,集合b中有n個元素,則從a到b可建立nm個映射3.函數定義:函數就是定義在非空數集a,b上的映射,此...

  • 互為反函數的函數圖象間的關系

    互為反函數的函數圖象間的關系一、 教學目標1.理解并掌握互為反函數的函數圖像間的關系定理,運用定理解決有關反函數的問題,深化對互為反函數本質的認識.2.運用定理畫互為反函數的圖像,研究互為反函數的有關性質,提高解函數綜合問題的...

  • 反 函 數

    教材:人教版全日制普通高級中學教科書(必修)數學第一冊(上)教學目標:1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關系.2.會求一些簡單函數的反函數.3.在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數...

  • 教案大全
主站蜘蛛池模板: 国产又黄又猛又粗又爽的A片 | 欧美视频二区欧美影视 | 成年女人免费碰碰视频 | 大地资源高清播放在线观看视频 | 中文字幕日产乱码六区 | 白浆一区二区三区 | A三级三级成人网站在线视频 | 综合久久综合 | 欧美爆乳乱妇高清免费 | 日皮免费视频 | 亚洲成a人片在线播放 | 天天爱夜夜 | 天天射天天干天天插 | 久久先锋影音av鲁色资源 | 一区一区三区四区产品动漫 | 色多多入口 | 给我播放的视频在线观看 | 亚洲AⅤ无码精品色情午在线 | 欧美一区二区日韩 | 全国最大黄色网址 | 成在人av抽搐高潮喷水流白浆 | 国产精品日日夜夜 | 娇小japansex黑人另类 | 久久狠狠高潮亚洲精品 | 少妇高潮九九九αv | 亚洲日本乱码一区二区三区 | 久久久久国产一区二区三区不卡 | av免费在线观看网站 | 中文在线播放一区二区 | av在线中文播放 | 亚洲精品无 | 国产一区精品二区 | 国产成人精品人人2020视频 | 国产成人精品一区二区三区网站观看 | 国产午夜日韩不卡一区 | 国产精品高清视亚洲乱码 | 奇米四色中文综合久久 | 国产爽爽视频 | 精品亚洲aⅴ在线观看 | 99精品免费久久久久久日本 | 程视频精品视频一区二区三区欧 |